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Abstract. We investigate the construction of all the periodic struc-
tures or “ gliders ” up to now known in the evolution space of the one-
dimensional cellular automaton Rule 110. The production of these peri-
odic structures is developed and presented by means of glider collisions.
We provide a methodology based on the phases of each glider to establish
the necessary conditions for controlling and displaying the collisions of
gliders from the initial configuration.

1 Introduction

The interest in the study of Rule 110 begins with the investigations by Stephen
Wolfram in one-dimensional cellular automata. Wolfram detects that this au-
tomaton can support complex behaviors identifying the existence of well-defined
periodic structures in the evolution space, as Douglas Lind describes in the ap-
pendix of [21]. In the cellular automata environment, a periodic structure moving
through time is called a glider.

Cellular automata are discrete dynamical systems which evolve through time,
these systems may support complex and self-reproducing behaviors, as it is de-
scribed by the precursor of this theory John von Neumann in [20].

The most famous cellular automaton is The Game of Life developed by John
Horton Conway [6], it is a binary two-dimensional automaton and it has been
used to implement artificial life, for instance, state zero represents a dead cell
and state one a live one. In this context the initial configuration has a number of
live beings who vary from generation to generation applying the evolution rule,
reproducing a set of very interesting behaviors.
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The wide variety of behaviors presented by this type of automata is the
reason to investigate and simulating certain biologic, chemical, mathematics,
physics and computing processes 1. In the computing theory environment, Con-
way demonstrates that The Game of Life is universal on simulating a registry
machine, constructing logics gates with gliders [2].

An important result in cellular automata theory in the last twenty years is
developed by Matthew Cook in the middle of the 90’s. Cook proves that 110
is universal by means of simulating a cyclic tag system [3], [22] y [12]. This
demonstration and the one corresponding with The Game of Life use gliders to
represent data and operations.

Cook establishes a classification of the gliders in Rule 110, the list was avail-
able in [4]2 and one part of the same appears in [22]. The list of gliders proposed
by Cook is more complete than the one presented by Lind, because it includes
quite a rare extensions of gliders, gliders of complex construction and the exis-
tence of a glider Gun.

In The Game of Life the glider Gun is very important to construct the registry
machine, but in Rule 110 the glider Gun does not have an relevant paper in this
sense. In this case blocks of well-defined gliders are used to simulate each one
of the parts of the cyclic tag system. This is a direct application of the gliders,
although the existence of gliders is an interesting subject by its own sake. For
instance, the number of collisions of gliders in Rule 110 is unlimited because
gliders can be grouped for traveling together in the evolution space and some of
them have extensions, this is important because several complex processes may
be implemented [1].

One of the questions is to know if Rule 110 can reproduce by itself each one
of its periodic structures, we solve this problem for gliders without extensions.

In this paper we show that each glider (without extensions) proposed by
Cook is obtained by collisions, using glider phases aligned by ether. In order to
reproduce each collision we use the phases [8] [12] to control gliders by means
of establishing a horizontal measurement in the initial configuration. We take
the binary productions presented in [10] for classifying all the binary collisions
producing a particular glider, this detailed examination demonstrates that D2,
Bbarn, Bbar8n and H gliders and the glider Gun cannot be obtained through
binary collisions, but they are product of multiple collisions. Throughout this
paper we use the classification proposed by Cook to identify each glider.

The collisions illustrated in this work were yielded by the OSXLCAU21 sys-
tem which may be freely obtained in [24]. This system applies the glider phases
to construct suitable initial configurations in Rule 110, and it also allows to filter
ether using an adequate selection of colors.

1 In the web site of Tim Tyler there are several examples including attractive applets
and other directions with excellent works in these subjects, http://timtyler.org/

2 By some legal problems, the list and some other information developed by Cook
about Rule 110 were retired [7]
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2 Representation of Rule 110 by Means of Phases

A relevant feature of Rule 110 is that it is a binary one-dimensional cellular
automaton with a very simple local dynamics, but the global behaviors that the
rule is able to construct are highly complex. In this way, we shall provide the
basic terms used in cellular automata theory.

A one-dimensional cellular automaton is composed by a linear array of cells
where each cell takes one value from 0 or 1, this is the initial configuration of
the system. The evolution rule is defined by the transformations of the neighbor-
hoods, a neighborhood is formed by a central cell, a neighbor to the right and
another to the left. In order to calculate the following configuration the evolution
rule is applied to all neighborhood in the array at the same time. This process is
repeated a number of times producing the global evolution of the automaton; an
example of the global evolution of Rule 110 using a random initial configuration
is illustrated in Figure 1.

The number 110 represents the rule in decimal notation which originally is
the binary number 01110110, in this way the neighborhoods 000, 100 and 111
evolve into 0 in the following generation and the neighborhoods 001, 010, 011,
101 and 110 evolve into. Notice that the ending cells of the ring at both sides
specify incomplete neighborhoods, in order to solve this problem we concatenate
the initial cell with last one to have complete neighborhoods in each position of
the evolution space.

Fig. 1. Random evolution in Rule 110.

In Figure 1 we have regions with stable behaviors represented by the periodic
background called ether by Cook, the periodic regions are determined by gliders
and the chaotic regions may be generated from the initial configuration or as
product of collisions with a short or long duration. In this figure we can also
see all the possible gliders which arise in a natural way as Lind describes in the
appendix of [21].

The evolution of Rule 100 can be seen as a covering of the evolution space
by means of triangles formed by the cells of the automaton, this is defined by
Harold V. McIntosh in [15]. Tn defines a triangle where very side has n cells for
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n ∈ Z
+; an interesting question is to determine the largest triangle produced by

a collision in Rule 110 [16].
Ether is represented by a periodic sequence which moves 14 cells to the right

in 7 generations. A triangle T3 represents ether and it establishes our horizontal
measurement aligning a pair of them to obtain a periodic sequence. We shall first
represent in a systematic way each one of gliders classified by Cook and then we
shall control each production using the glider phases. For this reason we shall
establish a horizontal measurement fi i for 1 ≤ i ≤ 4 as Figure 2 illustrates.

f1_1 f2_1 f3_1 f4_1

fases fi_1

Fig. 2. Phases in Rule 110.

For instance, the sequence 11111000100110 represents the phase f1 1 of ether
and we describe it as e(f1 1). This alignment allows to identify four different
periodic sequences fi to represent a given particular glider. In the case of gliders
with more than one alignment with ether, they have several phases to initiate
from the initial configuration. The second subindex i indicates the phase of the
T3 triangle; the other phases are a permutation of the first one. Therefore the
fi 1 phases are enough to establish the horizontal measurement.

Gliders are codified in the following way: #1(#2,fi 1), where #1 represents
a glider according to the classification of Cook and #2 is the phase of the glider
if it is greater than one.

3 Producing Gliders by Means of Collisions

Gliders arising in a natural way in the evolution space are not difficult to ob-
tain analyzing all the binary collisions; but Cook mentions that there are gliders
which cannot be produced in the evolution of the automaton and they can only
be specified from the initial configuration. However, although the Bbar8 and H
gliders and the glider Gun are indeed complicated structures which do not arise
commonly in the evolution space, they can be generated by means of collisions.
In this sense specialized computing searches were developed, finding several in-
teresting results.

Figure 3 depicts the production of each glider and the lower part of each
figure describes the sequence codified in phases to produce each collision. In the
case of the Bbar8 glider the collision is complicated and the synchronization of
each one of its parts is unique; the change of a single cell disturbs completely
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B

D2(A,f1_1)-e-F(A,f1_1)

Bbar8

C2(B,f1_1)-D1(A,f1_1)-e-Ebar(B,f1_1)-4e-Bbar(C,f2_1)-
B(f1_1)-B(f1_1)-B(f1_1)

Bbar

2A(A,f1_1)-e-G(A2,f1_1)

C2

A(f1_1)-e-Bbar8(B,f1_1)

C3

F(G,f1_1)-e-G(E,f1_1) C2(A,f1_1)-e-B(f1_1)

D1

F(G,f1_1)-e-G(B,f1_1)-B(f1_1)

D2

E

C3(A,f1_1)-e-B(f1_1)

Ebar

C3(A,f1_1)-e-G(E,f1_1)

F

A(f1_1)-e-C1(A,f1_1)

G

D2(A,f1_1)-e-E(D,f1_1)

Gun

A(f1_1)-3e-D1(C,f1_1)-e-2B(f1_1)-e-Bbar(f1_1)

H

A(f1_1)-7e-A(f3_1)-3e-Ebar(A,f1_1)-B(f1_1)-e-5B(f4_1)

A

F(G,f1_1)-e-Ebar(C,f1_1)

C1

F(A2,f1_1)-e-Bbar(A,f1_1)

Fig. 3. Gliders of Rule 110 reproduced by collisions.
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the final result. The same phenomenon is presented on synchronizing the gliders
to simulate a cyclic tag system [17].

An important point is that the succession of collisions must be defined taking
into account the order of the glider speeds. For instance in order to generate the
Bbar8 glider, the C2 and D1 gliders have speed of 0 and of 1/5 respectively. 3.
Thus the existence of the D1 glider preceded by the C2 glider may be questioned
whether it is product of a collision or not.

The A glider is generated by the Ebar and F gliders, the most of the collisions
between these gliders have a soliton-like behavior. 4 Solitons have their own
interest in cellular automata theory as Kenneth Steiglitz describes in [18] and
[13]. However it does not imply that they are the only gliders in Rule 110 able
to simulate solitons [9].

The G glider is produced by an isolated triangle T13, an relevant question is
to know if each glider may be yielded by an isolated triangle. For instance the
T10 triangle induces an Ebar glider, the T8 defines an E and the T1 generates
the A and B gliders.

H glider is produced by internal collisions among several gliders and small
chaotic regions interacting at the same time; in this sense we can suppose the
existence of more complex gliders. An important restriction is that every glider
must advance with increments of 2/3 and going back with decrements of -1/2
in each phase. On the other hand although we have a complex glider in its
construction, it can cover the evolution space and sometimes without ether [11];
for instance the H glider has two ways of covering the evolution space yielding
a really exotic result.

Finally, the existence of a glider Gun is important in two aspects: the first
is the straightforward representation of the unlimited growth of the automaton,
and the second is the possibility of constructing a self-reproducing system, a
relevant result developed by von Neumann in cellular automata theory. Glider
Gun arises more frequently than Bbar8 and H gliders; nevertheless the quick
interaction with other structures or chaotic regions avoids to form and conserve
the glider because in a similar way with H glider, its period is very large.

4 Concluding Remarks

The list of gliders without extensions proposed by Cook is fully reproduced
by means of collisions, the initial configurations used for obtaining this result
have been constructed through the phases of each glider. In several paragraphs
we have described the similarities between Rule 110 and The Game of Life,
something interesting is that although Rule 110 has a one-dimensional evolution
and its evolution rule is defined by eight neighborhoods, the global behavior is

3 The glider speed is determined by the displacement of its cells between its period
4 Soliton is a solitary wave with a nonlinear behavior which interacts with other waves

conserving its form and speed, and suffering just small displacements in each collision
[19]
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very difficult to analyze. Another open question is to demonstrate that there are
not more gliders in Rule 110.

The glider phases specify the horizontal measurement in periodic sequences
aligned by ether, in fact they are sequences of the extended de Bruijn diagram
[14], this diagram is useful to calculate all the periodic sequences of a given
cellular automaton. In this way the de Bruijn diagrams may show the whole set
of gliders in Rule 110, the problem is that these diagrams have an exponential
growth for large gliders.

An interesting point of Rule 110 is the existence of complex behaviors in a
periodic background, something that does not happen in The Game of Life which
has a stable background. Rule 110 also defines several periodic backgrounds with
other combinations of triangles. In these backgrounds the existence of others
gliders can be discussed, although they must be carefully established because a
small irregularity destroys these gliders and forms natural ether.

There is an unlimited number of interactions in Rule 110 and in the same
way as The Game of Life, a time must pass to find new devices like blinkers,
flip-flop configurations, structures eating other gliders, or large still-life regions.
In this sense a complete and interesting study is presented in [5].

The analysis of automata with complex behaviors produced by the existence
of gliders is an interesting area as Andrew Wuensche describes in [23]. Wuensche
defines a very practical process to filter gliders in periodic backgrounds of
distinct cellular automata. A further work is to project Rule 110 in two and
three dimensions for detecting other properties which have not been observed
in one dimension. In the tridimensional case, the evolution space covered by
tetrahedrons defining gliders and a periodic background must be spectacular.
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