Reproducing the cyclic tag system
developed by Matthew Cook with
Rule 110 using the phases f;_1

Genaro J. Martinez!, Harold V. McIntosh?,
Juan C. Seck Tuoh Mora?, and Sergio V. Chapa Vergara®

! Faculty of Computing, Engineering and Mathematical Sciences, University
of the West of England, Bristol, United Kingdom.
http://uncomp.uwe.ac.uk/genaro/

Email: genaro.martinez@uwe.ac.uk
2 Departamento de Aplicacién de Microcomputadoras, Instituto de Ciencias,
Universidad Auténoma de Puebla, Puebla, México.
http://delta.cs.cinvestav.mx/~mcintosh/

Email: mcintosh@servidor.unam.mx
3 Centro de Investigacién Avanzada en Ingenierfa Industrial, Universidad
Auténoma del Estado de Hidalgo Pachuca, Hidalgo, México.

Email: jseckQuaeh.edu.mx
4 Departamento de Computacién, Centro de Investigacién y de Estudios
Avanzados del Instituto Politécnico Nacional, México.

Email: schapa@cs.cinvestav.mx

Abstract. This paper implements the cyclic tag system (CTS)
in Rule 110 developed by Cook in [1,2] using regular expres-
sions denominated phases f;-1 [3]. The main problem in CTS
is coding the initial condition based in a system of gliders. In
this way, we develop a method to control the periodic phases of
the strings representing all gliders until now known in Rule 110,
including glider guns. These strings form a subset of regular
expressions implemented in a computational system to facili-
tate the construction of CTS. Thus, these phases are useful to
establish distances and positions for every glider and then to de-
lineate more sophisticated components or packages of gliders. In
this manuscript, it is possible to find differences with the results
exposed in Wolfram’s book [2], inclusively some mistakes which
avoid to obtain an appropriated realization of CTS in Rule 110;
fortunately, these irregularities were discussed and clarified by
Cook.”

5 M. Cook November 2002, personal communication.

Keywords: Rule 110, cyclic tag system, gliders, phases and
collisions

1 Introduction

The cellular automaton (CA) Rule 110 has received special attention
by the results exposed by Cook in [4]. This work gives a list and a
brief introduction about the complex activity of gliders, including the
existence of a glider gun; discussing as well some similarities between the
Game of Life (GoL) [5]® and Rule 110, suggesting to call it as LeftLife.

Some historical facts in the research of Rule 110 are as follows: this
CA evolves in one dimension with two states as alphabet, where the lo-
cal function takes just three elements (left-centre-right) to determine the
evolution over time. One of the first investigations about Rule 110 was
described by Wolfram [6], discovering that Rule 110 displays complex
behaviors by means of the existence of gliders — a glider is a periodic
structure moving into the evolution space — from random initial con-
ditions. Thus Wolfram establishes the conjecture that this rule could
perform universal computation.

Lind presents the first classification of gliders in Rule 110 in [6] with
13 gliders.” Next the first paper dedicated to the analysis of Rule 110
is made by Li and Nordahl in [7], where a statistical study and some of
the most common behaviors of Rule 110 are considered.

In 1998 a conference at the Santa Fe Institute takes place where
Cook explains how Rule 110 is able to be universal; this talk is originally
planned to be published in “New Constructions in Cellular Automata”
[8,38]. On the other hand, another perspective is reported by McIntosh
in [9], analyzing Rule 110 as a problem of tiles and applying de Bruijn
diagrams for characterizing every glider.

In this way, in March 2002 Wolfram presents his book “A New Kind
of Science” [2]. The book explains in several pages the features of the
gliders and the functionality of a CTS to demonstrate that Rule 110 is
an elemental universal CA. But one limitation in this work is that it does
not show a way to reproduce the result without the use of a proprietary
software.

In this sense, on trying to reproduce the operation of the CTS, it
has been found that the information proportioned in [2] is both incom-
plete and insufficient. Also there are mistakes in some of their elements

6 http://www.pentadecathlon.com/
" Appendix, table 15. Also available in http://www.stephenwolfram.com/
publications/articles/ca/86-caappendix/16/text.html

and others do not have the necessary components to produce a good
functionality.

With this background, the aim of this paper is to present a general
introduction to Rule 110, its system of gliders and their relation with
tiles, the existence of phases expressed by regular expressions via de
Bruijn diagrams and the CTS, all together to form a general context.
Finally, we discuss and illustrate a detailed coding for the more relevant
stages of the machine working into the evolution space of Rule 110.

2 Rule 110

Rule 110 is the binary local function of a CA in a one-dimensional order
(k = 2,r = 1) in Wolfram’s nomenclature [6], where k represent the
cardinality of the set of states and r the number of neighbors to the left
and right with regard of a central cell. In one dimension we have a finite
array of cells with periodic boundary properties, where the first and last
cells are concatenated to preserve symmetries into the evolution space.
Then every configuration is an instance of each array and it is updated
applying the local function simultaneously over all the neighborhoods to
generate the next configuration. The local function ¢ is defined in Table
1.

Table 1. Local function for Rule 110 - (01110110),.

Figure 1 shows a typical evolution of Rule 110 generated from a
random initial condition. The evolution diagram starts from an initial
condition of 761 cells with a density of 53% in state one, time advances
up-down in 349 generations.

Figure 1 shows a typical environment produced by Rule 110. We can
note a uniform compound state or periodic background marked with
other colors called “ether” by Cook [4]. This ether is a difference from
the two-dimensional Conway’s GoL. CA, which has a fixed background.
Also, other periodic regions are identified by structures moving through
the evolution space without changing their form, they are better known
as “gliders.” This word was originally adopted in GoL [5]. The chaotic
regions are produced from the initial configuration appearing for some

i i 7

Fig. 1. Typical random evolution in Rule 110.

time, in other cases they are yielded by collisions among gliders. Thus
we can look a non-trivial behavior in Rule 110.

An interesting point is that we can produce each glider from simple
or multiple collisions of other gliders as it is presented in [10, 11]. Some
collisions include complicated extensions or package of them. Now we
shall characterize every glider or periodic pattern into the evolution space
of Rule 110.

2.1 System of gliders

An extended description of gliders may be consulted in [9, 11, 12].8 This
section displays general properties and illustrative examples using the
classification exposed by Cook [1].

Gliders in Rule 110 has a wide variety of kinds, extensions and com-
binations. We can handle groups or packages of them in one or several
phases; thus notation nA means n copies of the A glider and not a pack-
age of A™ gliders. Figure 2 lists all known gliders so far both in their
basic representation and in packages or extensions as well.

These gliders have important characteristic useful to define distances,
slopes, speeds, periods, collisions, and phases [3,12, 11].

Table 2 summarizes some of the most relevant properties, column
structure gives the name of each glider including two more structures: e,
and ¢; which represent the slopes of ether pattern. The next four columns

8 The next web site has several examples where one can see large pictures of
single or packages of gliders. http://uncomp.uwe.ac.uk/genaro/rulel10/
glidersRulel110.html

Fig. 2. System of gliders in Rule 110.

labeled margins indicate the number of periodic margins in each glider.
The margins are partitioned in two types with even values ‘ems’ and odd
values ‘oms’ which are distributed as well in two groups: left and right
margins, because every glider has even and odd number of margins in
their left or right borders (or superior and inferior ones). Particularly,
the margin properties are very related to their analysis based on tiles
and phases [3,11]

Column v, indicates the speed of each glider, where g belongs to a
glider of the set of gliders G. Speed is calculated dividing the displace-
ment of d cells between its period p. The three types of trajectories are
also indicated in this column, this way we have three different basic
speeds. First there is a positive speed indicating a shift to the right. Sec-
ond there is a negative speed with a shift to the left and the last one is
a zero speed because in this particular case the differences between the
first and the second speed avoid a shift.

The speed of gliders allows to control distances to get desired reac-
tions. In general, larger gliders imply slower shifts; and any glider cannot
be faster than v, or v, in their positive or negative speed respectively.

Column lineal volume describes the minimum and maximum number
of necessary cells for determining the corresponding glider or another

Table 2. Properties of each glider in Rule 110.

margins
structure left - right Vg lineal
ems[oms|ems|oms volume

er . 1 . 1 2/3 =~ 0.666666 14
el 1 . 1 . -1/2 =-0.5 14
A . 1 . 1 2/3 =~ 0.666666 6
B 1 1 -2/4 =-0.5 8
B 3 3 -6/12 = -0.5 22
B" 30 .13 . -6/12 = -0.5 39
Ch 1111 0/7=0 9-23
Co 1111 0/7=0 17
Cs 1111 0/7=0 11
D1 1|12 |12 2/10 = 0.2 11-25
Do 112 |12 2/10 = 0.2 19
E™ 311 |3 |1 [-4/15~-0.266666| 19
E 6|2 |6 |2 |-8/30~-0.2066666| 21
F 6 | 4|6 |4 |-4/36~-0.111111 | 15-29
G" 91 2|9 | 2 |-14/42 = -0.333333| 24-38
H 17| 8 | 17 | 8 |-18/92 =~ -0.195652| 39-53

glider gun| 15 | 5 | 15| 5 |-20/77 = -0.259740| 27-55

periodic structure. For example, C; has two values expressing that nine
or twenty-three cells are needed to represent this glider.

2.2 Subset of tiles

A notorious property in Rule 110 is given by the local function ¢ which
covers the evolution space in a two-dimensional representation with tiles
or triangles of different sizes [13,9]. A tile is described by 7, where
n € N indicates the size of each triangle. State 0 defines the interior of
the triangles and state 1 determines the perimeter. These triangles are
classified in two sets a and 3 for n > 1. Figure 3 shows some of them in
ascendent numeration, forming two subsets of countable families, such
that {T} = {T}7}].

The Ty tile is just a cell in state 0; thus when the initial configuration
is assigned by the expressions: 0%, 1* and (10)*, the evolution space
is established by an homogenous evolution with state 0 (or tile Tp).
Nevertheless, the behavior is not the same for tiles 77, 15", Tf , T3, Tf ,
..., T, TP ... The evolution space can be covered by any T}, tiles for
0 <n <4 and for n > 5, it is covered by at least two different tiles. Let

o S T b I Y & O Y O O Ty T

DE@@m'H’mH B

Fig. 3. Two sets of tiles in Rule 110: « and 3.

T; and T; € T where ¢ # j, then both sets cannot operate in the plane
under the function of Rule 110 if they cover partially the space (there
are gaps) or overlap with another tiles.

Thus, the tile families {7.%} and {T)?} give a detailed description of
the evolution space in Rule 110 through their sets: a and 8. A second
important point is that the tiles establish properties by the periodic mar-
gins in their recurrent structures (gliders and ether). Their interpretation
is also important to derive phases, including non-periodic structures.

2.3 Regular language based on gliders and de Bruijn
diagrams

This section is devoted to give a brief introduction in phases and de
Bruijn diagrams; a more extended explanation can be found in [3] and
the complete set of regular expressions may be consulted from a digital
file.”

The regular language Ly110 is based on a set of regular expressions
Ur110 determining each glider of G. Lgi1¢ is established via de Bruijn
diagrams and with the characterization of tiles, where both have been
analyzed for defining useful features called “phases.” They indicate with
precision the position and the exact moment where each glider must be
positioned into a given initial condition.

The set of regular expressions and their basic operations are able to
construct desired initial conditions to yield evolutions with important
features; the main interest is to control and produce collisions among
gliders. In this way Lz119 becomes a powerful tool to codify initial condi-
tions; immediate applications with relevant results have been performed
over hundreds, thousands, millions and thousands of million of cells!®
[10-12,14].

De Bruijn diagrams [15-17] are very adequate for describing evolution
rules in one-dimensional cellular automata, although originally they were

% http://uncomp.uwe.ac.uk/genaro/rule110/1istPhasesR110.txt
10 http://uncomp.uwe.ac.uk/genaro/rule110/ctsRule110.html

used in shift-register theory (the treatment of sequences where their
elements overlap each other). The de Bruijn diagrams can extract any
periodic string of Rule 110 or another CA; particularity we employ the
connected cycles from extended de Bruijn diagrams to calculate any
string and its shifts over a number of generations.

A glider in Rule 110 can be seen as a periodic construction preserving
a defined cyclic border with ether in the evolution space. Essentially a
glider has the following characteristics: volume (number of cells repre-
senting its form), period (number of evolutions to recover the original
sequence), displacement (change of horizontal position measured in cells
on finishing its period) and speed (velocity produced by the period be-
tween the displacement). Thus a set of gliders with different volume and
speed can be represented.

In order to explain how the sequences of each glider are determined, a
de Bruijn diagram for an A glider is firstly calculated and it is decribed
how the periodic sequences are extracted from it or representing this
glider and specifying as well its set of regular expressions.

A glider moves two cells to the right in three times (see Table 2), the
corresponding extended de Bruijn diagram (2-shift, 3-gen) is depicted in
Figure 4. The cycles in the diagram are periodic sequences describing
each phase in the glider; however these sequences are not ordered yet,
hence they must be classified.

shift 2 in 3 gen

Fig. 4. De Bruijn diagram for A gliders within ether configurations.

Diagram in Figure 4 has two cycles: a cycle formed by just a vertex
0 and another large cycle of 26 vertices composed by other nine internal
cycles. The evolution of the right illustrates the location of the different
periodic sequences producing the A glider in distinct numbers.

The sequences or regular expressions determining the phases of the
A glider are obtained following paths through the edges of the diagram.
For instance, the following cycles specify different formations:

I. The expression (1110)*, vertices 29, 59, 55, 46 determining A™ glid-
ers.
IT. The expression (111110)*, vertices 61, 59, 55, 47, 31, 62 defining nA
gliders with a T3 tile among each glider.
ITI. The expression (11111000100110)*, vertices 13, 27, 55, 47, 31, 62, 60,
56, 49, 34, 4, 9, 19, 38 describing ether configurations in a specific
phase (in the following subsection we will see that this phase is called

€(f1,1)).

Cycle with period 1 represented by vertex 0 produces an homoge-
neous evolution in state 0. The evolution space in Figure 4 shows differ-
ent packages of A gliders, the initial condition is constructed following
some of the seven possible cycles of the de Bruijn diagram or a combi-
nation of them. In this way the number of A gliders or the number of
intermediate tiles 7. f can be selected changing from one cycle to another.

Table 3. Four sets of phases Ph; in Rule 110.

— {f11, f2 1, f51, £,_1}
— {f1,2, f2,2, f3,2, f4,2}
— {f1,3, 23, £33, f473}
— {14, f2.4, f5.4, £, 4}

phases level one (Ph;
phases level two (Pha
phases level three (Phs
phases level four (Phy

— O — —

The alignment of the f;_1 phases is analyzed to determine the whole
set of strings for every glider. First it is necessary to describe the form
and limits of each glider by tiles, then a phase is fixed (in our case the
phase f;_1) and a horizontal line is placed in the evolution space bounded
by two tiles T3. Thus, the sequence between both tiles aligned in each of
the four levels determines a periodic sequence representing a particular
structure in the evolution space of Rule 110. Thus all periodic sequences
in a specific phase are calculated, enumerating the phases for each glider
or non-periodic structure.

Table 3 represents every disjoint subset of phases, each level contains
four phases. Variable f; indicates the phase currently used where the sec-
ond subscript j (completing notation f;_j) indicates the selected set Ph;
of regular expressions. Finally, this notation codifies initial conditions by
phases as follows:

#1(#2, fi-1) (1)

where #; represents a glider according to Cook’s classification (Table 2)
and #» the phase of the glider with period greater than four.'!

Therefore, the full list of regular expressions ¥r119 for each glider,
including a glider gun, is given in [3] and it also serves as a simple finite-
machine for the OSXLCAU21 system'? developed to code gliders in Rule
110.

3 Universal CA

Universality in CA is developed and solved by von Neumann in [18] as
a previous step in the specification of the universal constructor for his
automaton of 29-states. The element of universality into this constructor
is a necessary ingredient to handle non-reliable pieces (atomic elements)
for assembling reliable components with the capacity of executing com-
putations by collisions of signals.

There are several significant simplifications in universal-computing
CA with fewer states and dimensions: Codd in 1968 [19], Banks in 1971
[20], Smith in 1971 [21], Conway in 1982 [22], Lindgren and Nordahl in
1990 [23], and finally Cook in 1998 [1].

Analogous to the search of a minimal universal Turing machine [24],
Cook details the minimal universal CA with Rule 110; showing how a
“simple” elemental CA is able to simulate an equivalent Turing machine
within a novel CTS, performing a computation [1,25] with collision of
gliders in millions of cells.

3.1 Tag systems

The concept of “tag system” has an interesting antecedent in the work
developed by Emil Post looking for a unique effective procedure for prov-
ing if for any formula could be formally derivable in its own logic of
propositions. This issue is referred as the “finiteness problem” consist-
ing on finding a canonical form to solve a given decision problem (for
more details see “Emil L. Post: His Life and Work” in [26]); inducing
the search and development for some auxiliary procedure.

The tag system is a variation from the Turing machine [29] for imple-
menting computable processes; Minsky demonstrates that tag systems
are universal [30] and unsolvable [34]. Another relevant result is obtained

11 The arrangement by capital letters for the #o parameter into the OSXL-
CAU21 system [36] does not have a particular meaning; it is only used to
represent the different levels of phases in periods module four.

12 http://uncomp.uwe.ac.uk/genaro/0SXCASystems . html

by Cocke and Minsky [31] proving which tag systems are universal just
with the deletion number v = 2.

Therefore, it is worthwhile to remember the original concept to

derstand tag systems. Thus a literal transcription from [27] is given

Given, a positive integer v, and p symbols which may be taken to be
0,1,...,u—1. With each of these x symbols a finite sequence of these
symbols is associated as follow.

0 — a0,1Q20,2 - - - ao,yo
1— a0,1Q0,2 . . . Q0,1

p=1 = au-110u-12. . Gu—1p, ;-

It is understood that in each sequence the same symbol may occur
several times, and that a particular associated sequence may be null.
In terms of this basis, we set up the following operation for obtaining
from any given non-null sequence:

B=0bibi...b

on the symbols 0,1, ..., — 1, a unique derived sequence B’ on those
symbols. To the right end of basis, and from the left end of this aug-
mented sequence remove the first v elements — all if there be less
than v elements. As long as B’ is not a null sequence, this operation
can then be applied to B’ to yield a sequence B”, to B”, if not null,
to yield B”’, and so on. The problem of “tag” for the given basis is
then to obtain a finite process for determining for any initial sequence
B whether the resulting iterative process does or does not terminate.

Let us see some simple samples with parameters u = 2, v = 2

un-
13.

and

the next production rules: 0 — 0 and 1 — 10. The symbol - means an
effectively computable relation [33]; let us made some operations with
different initial conditions looking its “halt” condition.

0000 + 000 F 0 (halt disappear)
1111 F 1110 F 1010 - 1010 (halt periodic)

1010 + 1010 (halt periodic)

00001111 + 0011110 F 111100 F 110010 F 001010 F 10100 F 10010

)
)
) 0101 F 010 F O (halt disappear)
)
)

01010 F 0100 - 000 + 0 (halt disappear)

'3 This work is finished by Post in 1941 but it is published up to 1965. It may

be consulted in [28,26]. M. Davis June 2007, personal communication.

Post determines two relevant conjectures in tag systems; the first
showing that a tag system can be recursively unsolvable [26] and the
second one finding intractable problems [32]. In particular for 4 = 2 and
v > 2, it is established that not all the terminal processes are known,
a special case is illustrated for the pair of productions 0 — 00 and
1 — 1101.

3.2 Cyclic tag systems

CTS are new machines proposed by Cook in [1] as a tool to implement
computations in Rule 110. CTS are a variant of tag systems with some
changes; they have the same action of reading a tape in the front and
adding characters at its end, nevertheless there are some new restrictions
and characteristics:

1. CTS need at least two letters in their alphabet (p > 1).

2. Only the first character is deleted (v = 1) and its respective sequence
is added.

3. In all cases if the machine reads a character zero then the production
rule is always null (0 — €, where € represents the empty word).

4. There are k sequences from p* which are periodically accessed to
specify the current production rule when a nonzero character is taken
by the system. Therefore the period of each cycle is determinate by
k.

This way a cycle determines a partial computation over the tape.
Cook does not specify any particular halt condition because perhaps it
is a direct consequence of tag systems. Let us see some samples of a CTS
working with ¢ = 2, k = 3 and the next production rules: 1 — 11,1 — 10
and 1 — €. To avoid writing every chain where there is not necessity of
adding characters, the -, relation is just indicated to simplify space and
redundant information.

For example, the succession 00001 F1Fsk3k1F5 10 represent the next
particular relations 00001 F; 0001 F5 001 3 01 k¢ 1 o 10. Also, each
relation indicates which p sequence is selected.

(a) 00001 FqFobsk1k2 10 F3gb (halt disappear)

(b) 10101 k1 010111 Fok3k4ko 1110 5k 1011 o 01110 F3k4 11011 b
101110 k315 11010 3¢ 01011 Fob3b1Fo 110 B3 011 b3k 11
Fo 110 k31 011 (halt periodic)

(¢) 01100 k12 10010 F3g1Fat3sk1 (halt disappear)

(d) 11111+ 1111115 1111110 gk 1111011 F5 11101110 F3k4 1011101
1 5 011101110 F3k; 110111011 Fo 1011101110 F3k1Fo 1101110

Fsb1 0111011 Fob3k; 101111 F9 0111110 3k 1111011 5 11101110
F3b1 10111011 2 011101110 F3k4 110111011 5 1011101110 Fgk1k2
110111010 k371 011101011 Fobgk; 10101111 Fo 010111110 Fsky
0111110 Fgok3k; 111011 o 1101110 F3ky 0111011 Fobgky 1011 ko
01110 F3b; 11011 Fo 101110 F3b1ko 11010 Fsby 01011 Fobghqbo
110 }_3|_1 011 "2"3"1 11 }_2 110 }_3}_1 011 (halt peI‘lOdlC)

This representation offers two facilities; avoiding long chains in every
step for the null relation and finding the periodic behavior between chains
and relations where both need to be repeated. In general in this case one
must hope that any chain eventually reaches a terminal condition.

The intention of the previous example is to show that the halt condi-
tion in CTS behaves in the same way that in tag systems, consequently.
Particularity CTS tend to growth quickly and it is more complicated to
see this behavior in this way. In this sense, Morita in [35] has demon-
strated how to implement a particular halt condition in CTS given an
output string when the system is halting, and how a partitioned CA can
simulate any CTS, consequently computing all the recursive functions.!*

3.3 Comparing behaviors of tag systems and CTS

Cook explains how a CTS must simulate a tag system [1]. This section
displays a very simple case where the “behavior” of a CTS emulates a
terminal tag system.

Let us take a tag system with ;4 = 2, v = 1 and the next productions:
0 — 1 and 1 — e. Its behavior is showed with some chains having in all
cases the disappearing halt condition.

0000 = 000 - 000 - 00+ 0

1111+ 111 F11F1

010101 + 101011 01011 + 10111 F 0111 - 1111 F 111 F 11 F 1
000111 + 001111 + 011111 F 111111 F 11111 F 1111 F 111 F 11 1

(a
(b
(¢
(d

— D

Thus we need to specify a CTS with u = 2, k = 2 and the next
sequences: 1 — 1 and 1 — €. Let us take the same previous chains.

(a) 0000 "1"2"1"2"1

(b) 1111 1 1111 Fob 111 Foby 11 by 1k
(C) 010101 |_1|_2|_1|_2|_1|_2 1 |_1 1 }_2

(d) 000111 Fybob ol 11 ok 1k

14 K. Morita December 2006, personal communication.

It is clear that both machines have the same behavior yielding analo-
gous terminal states; although frequently a CTS uses more relations than
a traditional tag system. CTS are relevant as equivalent Turing machines
and they were studied with certain dedication in the last years. Open
questions are:

— How CTS could find intractable and undecidable problems from more
basic sequences?

— What is the number of terminal subsets with minimum values in
and k7

Similar to Post with his tag system, Cook determines that for a
CTS with p = 2, k = 2, the next relations 1 — 11 and 1 — 10, and
also beginning with a 1 in the tape; it is unknown whether the process
is terminal or not. Another particular problem is to establish a halt
condition in Rule 110 with a CTS; this details are discussed in the next
section.

4 Reproducing a CTS in Rule 110

This section presents several aspects for reconstructing the operation of
a CTS in Rule 110 as the one presented in [2]. We must use a CTS with
u =2, k=2 and the next relations 1 — 11 and 1 — 10, begging with a
1 into the tape. A segment of its behavior is given as follow:

1k 11 F9 110 Fy 1011 Fo 01110 F3F2 11010 F; 101011 2 0101110
F1F2 0111010 F3t5 1101010 ;3 10101011 4 010101110 F3+5 010111010
F1F2 011101010 FqF2 110101010 F; 1010101011 Fo 01010101110 k4
01010111010 12 01011101010 F1F2 01110101010 45 11010101010 4
101010101011 5 0101010101110 F4+2 0101010111010 2 01010111010
10 19 0101110101010 F1F2 0111010101010 1o 1101010101010
10101010101011 5 010101010101110 412 010101010111010 F4F2 01010
1011101010 3+ 010101110101010 4+ 010111010101010

This example and CTS in general have an apparent inspiration in
the mathematical puzzle proposed by Kolakoski [37]. But, particularity
Cook was looking for a simple procedure to construct sequences avoiding
a quick repetition.'?

Some characteristics of the previous CTS are as follows: A chain tends
to growth in certain order by its length or package of bits and intuitively
it seems that these relations do not repeat. For example, taking as basis

15 M. Cook June 2007, personal communication.

the expression 1(10)*, the CTS moves (from right to left) and adds a
new pair of bits; when 1(10)* is reached again, the number of relations
selected in each interval growths lineally in order of f; = 2(n + 1).
Nevertheless, the number of bits into the chain growths parabolically as
we can see in Fig. 5. Function f; represents the interpolated polynomial
from the first ten initial values and function f3 the extrapolation.

Therefore, if we take consecutive copies of 1(10)* with their respective
intervals determined by the number of j relations (represented as /),
we obtain the next chains: 1 7 110 +} 11010 F¢ 1101010 8 1101010
+19110101010 F}2 11010101010 +}* 1101010101010 F16 So, there is
not a succession of two contiguous zeros as it was previously generated
by the CTS. The parabolic growth is given in every chain and its linear
growth in the interval of relations.

48
40
32

24

A

25 0 25 5 75 10 125 1

£

Fig. 5. Growth function for the CTS.

Now we expose how to interpret gliders and their collisions to emulate
a CTS in Rule 110, basically we must use packages of gliders to represent
data and operators; their reactions read, transform and delete data in
the tape. Several details are delicate reason why its reconstruction is
laborious and not an easy task. In essence we can see the representation
in Figure 6 and the features and labels of this diagram are explained in
the next paragraphs.

OEle_C2 4_4A 1Ele_C2 3A Seplnit_EEb 1BloP_Eb 0Blo_Eb 1BloS_Eb

Fig. 6. Interpretation of a CTS working in Rule 110.

4.1 Components based on packages of gliders

The construction of the CTS in Rule 110 can be partitioned in three
parts. First is the left periodic part controlled by packages of 4_A* gliders,
this part is static and controls the production of 0’s and 1’s. The second
part is the center determining the initial value in the tape, and the third
one is the right cyclic part which has the data to process, adding a
leader component specifying added or erased data from the tape in the
evolution space.

In the left part, the four packages of A* gliders must be carefully
explained because although they are static, their phases change period-
ically. The important point to implement these components is defining
both distances and phases, because a distinct phase or distance induces
a non-wished reaction; in fact all components follow this restriction be-
cause every glider of each component must be correctly aligned.

Fig. 7. Packages of 4_A* gliders.

Packages defined by A* gliders have three different phases: f;_1, fo_1
and f3_1. In order to construct the first 4_A* we need to establish the

phase of each A%; let us assign phases in the following way: A*(f3_1)-27e-
A% (f3.1)-23e-A*(f1_1)-25e-A*(f3_1) as it is illustrated in Figure 7. Spaces
between each 4_A* are static but the phases rotate to obtain collisions
like a soliton with the E gliders generated in the system, this rotation
in each A* is also projected in the whole package 4_A*. Eventually this
becomes periodic as follows:

{649e-A*(f5-1)-27e- A (f; -1)-23e- A% (f3_1)-25e- A% (f2-1)-649e- A* (f; -1)-
27e-A*(f3-1)-23e- A% (fa-1)-25e- A% (f1-1)]-649e-A* (f3-1)-27e- A* (f2-1)-23e-
A*(f1-1)-25e-A%(f5-1) }*

if for every 4_A* we take a phase representing the complete package, we
can rename it as:

{649¢-4_A%(F,)-649¢-4_A*(Fy)-649¢-4_A%(F3) }*

this rotation is important to preserve the left part of the system.

Distances between each 4_A4* must be carefully specified since short
spaces do not allow a good construction because A gliders are faster
than £ and E gliders, and they would reach the data formed by Cs
gliders before new packages of data arrive. Cook has considered this
problem determining a necessary minimum distance when the twelfth 1
is produced into the tape of its diagram in [1]. This is very close to the
fourth 0 but the next 4_A* package does not disturb this element; other
distances for the rest of collisions are sufficiently spaced taking finally
an interval of at least 649 ether configurations.

Elements 1Ele_Cy and OEle_C,
The central part is constituted by an initial 1 into the tape repre-

sented by a package of four Cs gliders. This way, an element 1Ele_Cs
represents a 1 and the element OEle_Cs represents a 0 in the tape.

oT3 713 9T3 5T3 T3

Fig. 8. Elements 1Ele_C5 and 0Ele_C5.

Particularity, the number of elements listed in Wolfram’s book [2] to
construct a CTS is incomplete and with mistakes, this situation made
impossible to reconstruct the system.!® In fact a discussion about the
external factors involved in the publishing of the original work in Rule
110 can be consulted in [38, 39].

The first picture in Figure 8 shows the element 1Ele_C5, since the
same idea is used in the others components, first we should reproduce
each element by the phases f;_1. Thus the code in phases is: Co(A,f;-1)-
2e-Cy (A f1-1)-2e-Co(A,f; -1)-e-C2(B,f5_1). The first three Cy gliders are
in phase (A,f;_1) and the fourth Cs is in phase (B,fz_1), hence the dis-
tances among them are: 975-975-7T5. In order to take the distance, we
count the number of T3 tiles between gliders. The phase of the last Cs
cannot be other because it produces another reaction. The same analysis
for the element OEle_Cs yields the distances 9753-573-7T3.

Thus differences in both blocks are relevant, the first difference is that
the distinct central space between both packages and the second one is
that their phases are dissimilar as well. Their phases f;_1 are projected
at each element, for instance the element 1Ele_C; has 7 phases in which
it can be represented in the initial configuration, hence we take the first
glider and the rest are aligned together. Each sequence of bits for every
element is presented in the appendix.

Element 0Blo_FE

The left part stores blocks of data without transformation in packages
of F and E gliders.

Fig. 9. Element 0Blo_E.

16 These problems were clarified by M. Cook. in november 2002 (personal
communication).

The element 0Blo_F is formed by 12E gliders as we can see in figure 9.
There must be an accurate phase and distance between each one of them
because in otherwise the whole system will be disturbed. This element
represents a 0 into the tape in the CTS if a leader permit this conversion,
when it is pre-transformed then finally we have an element OEle_Cs.
Essentially this block of gliders do not need important changes like we
shall see in the next element; it is only necessary to preserve distances
and phases.

Elements 1BloP_E (primary) and 1BloS_E (standard)

Cook establishes the existence of two components to represent 1’s:
primary and standard, if one of them is not used the system does not
work suitably. Let us note that the primary element was completely
ignored in Wolfram’s book [2].

Fig. 10. Elements 1BloP_E (primary) and 1BloS_E (standard) respectively.

They are differences in distance of their first two E gliders as figure 10
displays. In essence both blocks produce the same element 1Add_FE al-
though coming from different intervals. The reason to use both blocks

is that Rule 110 is not symmetric; therefore if we use only one element
then surely we would obtain a good production in the first collision gen-
erating an element 1Add_E; moreover when the second package of 4_A*
gliders finds the second block, the system is completely destroyed.

Element Seplnit_EFE

A leader element renamed as Seplnit_E E (see Figure 11) is important
to separate packages of data and determine their incorporation into of the
tape. Particularity its has a small but detailed code determining which
data without transformation would be added or erased from the tape,
depending on the value that it finds. This element is very delicate because
we can define two different phases for the same index but they eventually
are different, because the E glider has 4 phases and the E glider has 8
phases. Therefore, we could have two equals phases apparently from the
initial gliders but E is in different phases.

Fig. 11. Element SepInit_EFE.

For this reason we have two distances at the same interval, thus if a
phase works suitably the next will not because their E gliders would be
out of phase. Then we should omit the second version of this element pre-
sented in Wolfram’s book [2] because it is a consequence of SepInit_EE
after colliding with three A gliders and it is not necessary to code it from
the initial configuration since it is reached after several reactions on the
evolution.

Elements 1Add_F and 0Add_E

Figure 12 illustrates the elements 1Add_E and 0Add_E produced by
two previous different packages of data. An element 1Add_E must be

generated by a block 1BloP_E or by 1BloS_E. This way, both elements
can produce the same element.

On the other hand, an element 0Add_E is generated by a block
0Blo_E although in this case it is not necessary a primary element. Nev-
ertheless, we could produce E gliders modifying their first two distances
and preserving them without changing others gliders to get a reliable
reaction. This is possible if we desire to experiment with other combina-
tions of blocks of data although this could complicate the implementation
of the system.

27 27 27

Fig. 12. Elements 1Add_Eb and 0Add_E respectively.

Again, here we have another mistake in Wolfram’s book [2] (page
681). The element 1Add_E has distances 27e-21e-27¢ in the E gliders
but in [2] this element has distances 20e-27e-21e. It is easy to deduce
that this was an error on selecting the figure. The first E of such figure
in [2] is an invisible glider for the CTS because it will cross as soliton
all data and operators; thus the next three E gliders correspond to the
element 1Add_E.

So, if a leader element Seplnit_EE reaches an element 1Ele_E, it
erases this value from the tape and adds a new data that shall be trans-

formed. In other case, if it finds an element OEle_E, then it erases this
element from the tape and also erases a set of unchanged data which
come from the right until finding a new leader element. Essentially this
operation represents the addition of new values from periodic packages of
gliders coming from the right. Thus an element 1Add_E is transformed
into 1Ele_E colliding against a package of 4_A* gliders representing a
value 1 in the tape, and the element 0Add_FE is transformed into OEle_E
colliding against a package of 4_A* gliders representing a value 0 in the
tape.

Table 4. Distances between the gliders of each element.

element distance

1Ele_C, 9-9-7

OEle_Cs 9-5-7

1BloP_E |4-6-2-8-8-2-10-1-2-8-8
1BloS_E |10-1-2-8-8-2-10-1-2-8-8
OBlo_F 10-1-2-8-8-8-10-1-2-8-8
Seplnit_EE|4-14-(6 or 7)-6-9-2-8
1Add_E |27-21-27

0Add_E |27-27-27

Finally, Table 4 enumerates all distances (number of T3 tiles) for
every necessary element in the construction; this is a practical way to
identify any element in the evolution space. Finally, we can code the
construction of this CTS with phases representation in three main big
blocks as follows:

left: ...-217e-4_A*(F2)-649¢-4_A*(F1)-649¢-4_A* (F3)-649¢-4_A* (F2)-
649¢-4_A%(F1)-649¢-4_A* (F3)-216¢-

center: 1Ele_Cy(A,f; _1)-e-A3(f; _1)-

right: Seplnit_EF(C,f3_1)-1BloP_E(C,f;_1)-SepInit_EE(C,f3_1)-
1BloP_E(C,f;-1)-0Blo_E(C,f;-1)-1BloS_E (A f,_1)-
SepInit_EE(A,fy 1)(2)-1BloP_E(F,f; _1)-SepInit_EE(A,f3_1)(2)-
1BloP_E(F,f; 1)-0Blo_E(E,f; 1)-1BloS_E(C,f;_1)-e-
SepInit_EE(B,f;_1)(2)-1BloP_E(F f3_1)-e-
Seplnit_EE(B,f;1)(2)-217¢-. . .

this initial conditions in Rule 110 are able to generate the serial se-
quence of bits 1110111 and a separator at the end also with two solitons;

achieving a satisfactory construction in 57,400 generations with an ini-
tial configuration of 56,240 cells. This square implies an evolution space
of 3,228,176,000 cells; thus the simulation of the CTS in Rule 110 is
highly inefficient and it could be hardly used in practical applications.
Moreover, the relevance here is to show its universality produced by a
simply impressive construction and global synchronization.

In the next section we explain and display the (more relevant) stages
in the evolution space of Rule 110 with the CTS working. First we must
see two possible cases.

4.2 Beginning from 0

Fig. 13. CTS beginning from a 0 in Rule 110.

If the system begins from zero in the tape then the machine must
stop in one step because this element is erased and there is not any added
element to the tape (remember that 0 — ¢€), corresponding to the pair in
the original productions. This operation is fulfilled with the packages of
gliders previously discussed because independently of how the blocks of
data are structured, they do not produce a new element in the tape. The
structure of data is gradually destroyed as we can see in figure 13, after
the second package of A* gliders reaches the a second leader component.

4.3 Beginning from 1

The CTS presented in [2] begin from 1 in the tape like the illustration
in figure 6. The next snapshots show the most relevant stages of the
machine working in Rule 110. In every picture we indicate with colored
labels every different element or component.

Figure 14 displays the initial stage of the CTS with a 1 in the tape.
This data is represented by the element 1Ele_Cy and depicts as well
the central part of the machine from its initial condition also with a
package of A3 gliders, such that, this package would prepare the first
leader element SepInit_EFE coming from the right periodic part. So this
package of A3 gliders arrives joined or separated producing the same
reaction.

The first reaction in figure 14 deletes its respective 1 in the tape
(element 1Ele_C5) and as consequence an element separator prepares the
next data that would be aggregated. If it finds an element OEle_C5 then
does not allow to add data on the tape until finding another separator.
Both E gliders which remain to the first production are invisible in all
the system and do not affect in any operation because they cross as
solitons the subsequent packages of 4_A% gliders.

Figure 15 shows the continuation of the previous evolution. This
snapshot describes a production of the element 1Add_E from the pri-
mary component 1BloP_E. Its construction uses a basic periodic reac-
tions identified vertically by the columns of C; and pairs of C5 gliders.
A C; stops an E producing a new pair of C5 which also receive a pair
of E gliders yielding a C again. This operation is repeated until find a
leader element receiving three A gliders.

Figure 16 illustrates two aspects, the production of an element 1Ele_Co
and the existence of invisible E gliders crossing as solitons the successive
packages of 4_A* gliders. Each block of A* gliders transforms each E in
1Add_FE into a Cy of 1Ele_Cy. Analogous, in order to construct an ele-
ment 0Ele_C'; we have a similar structure to the previous example and
their distances determine this element with their internal gliders.

Figure 17 displays the evolution following figure 16. In this case, we
can see an element 1Ele_Cy constructed from a package of 4_A* gliders,
However, it has a very short life because quickly a separator element
arrives erasing and preparing new data that would be aggregated to
the tape. An important point is that E gliders which cross as solitons
preserve distances and phases.

Figure 18 shows how data are pre-transformed and eventually aggre-
gated onto the tape and where a standard component must be correctly
placed. Top evolution describes the transformation from a primary com-
ponent 1BloP_FE in an element 1Add_FE with a glider soliton. There is as

i

e

=

1an0)

(47672 48772

Fig. 14. Initial stage of CTS in Rule 110.

(4787245772 2600)

Fig. 15. Construction of the element 1Add_FE from a primary component

(4767248772 4200)

Fig. 16. Operators based in packages of 4_A* gliders.

(4767248772 5300)

Fig. 17. Constructing an element 1Ele_Cs.

(4713248252,7700)

Fig. 18. Constructing an element 1Add_FE.

TR

(a713e-d 2323 100)

Fig. 19. Constructing an element 0Add_E.

e

(a0 48 102, 168

Fig. 20. Transformed data crossing the tape of values.

well an element 0Blo_E which changes in an element 0Add_E and the
standard component 1BloS_FE is transformed in an element 1Add_FE.

Figure 19 describes the formation of a 0Add_E element. Note that
when there is not a leader element between these blocks, the system
does not produce solitons. In this snapshot, all E gliders are processed
as data and they will be transformed for a package of 4_A* gliders. Thus,
soliton patterns are only originated from leader components. We can
see completely as well in this snapshot a standard component 1BloS_E
needed for the suitable behavior of the system (adjusting of the non-
symmetric evolution space of Rule 110).

Finally in Fig. 19 a leader element SepInit_EFE arrives to close a
periodic block coming from the right. This periodic block begins with:
a separator, a primary black block, a separator, another primary black
block, a white block and a standard black block. Therefore, the real
period by components to the right can be written as follows:

{SepInit_E E-1BloP_E-Seplnit_E E-1BloP_E-0Blo_E-1BloS_E}*.

Figure 20 presents the construction of a 1Ele_C5 element. In this
stage of the evolution, we can see how data is aggregated before they
cross the tape with their respective values. Also, these reactions are the
same with the element 0Ele_C5. Also, there is a unique option between
Cs and F gliders to cross as solitons because any another reaction does
not preserve this property [12]. It is really a laborious task to obtain the
global synchronization.

Figure 21 shows a constructed 0Ele_Cy element and its function in
the system. At the top, an element 1Add_E is previously produced by
a standard component 1BloS_E crossing an element 0Ele_C5. Hence a
leader element comes to delete this 0 from the tape and all the subsequent
incoming data. In this sequence, there are 1BloP_E, 0Blo_E and 1BloS_E
elements.

Similar when a 1 is deleted from the tape, when a 0 is deleted, dis-
tances are smaller in the first collisions and a T34 tile is generated in the
process. This difference of distances determines a change of phases which
will erase E gliders instead of produce C' gliders. In order to delete these
packages of gliders, a reaction A% — F is used. Figure 22 illustrates how
must be erased sequentially packages of data and they arriving order
does not affect if they are deleted or pre-transformed. Finally, Figure 23
shows the final stage deleting data and a new period would begin again.

Production rules in CTS establishes for 0 that the first element of
the chain must be erased and the other elements are conserved without
additional data. If the first value is 1 the first element of the chain is
deleted and 10 or 11 are aggregated depending of the k value. This

(4acaz 44a0e 2A00)

Fig. 21. Deleting a 0Ele_C2 element.

Fig. 22. Deleting unchanged data blocks with the reaction A®> — E.

(4350544802 32200)

Fig. 23. Final stage deleting data.

behavior is well represented when a separator finds 0 or 1 and deletes
it from the tape. If the deleted data was 0, a separator does not allow
the production of new data until it finds a new one; on the other case
whether the deleted data is 1, a separator aggregates the new elements
11 or 10 that will be transformed later.

This construction is repeated indefinitely. Thus, using this procedure,
we can calculate up to the sixth 1 of the sequence 011<1>0 produced by
the CTS; verifying that phases f;_1 are useful to reproduce this system
in a different way. Finally, in terms of periodic phases, this CTS can be
written as follow:

left: {649¢-4_A*(F_i)}*, for 1 <i < 3 in sequential order
center: 246e-1Ele_C2(A f; 1)-e-A3(f; 1)

right: {SepInit_EFE(#,f;_1)-1BloP_E(#,f;_1)-SepInit_EE(#,f;_1)-

ght: {Seplnit_EE(#,f; 1)-1B (#,£;-1)-Sep (#.,£:-1)
1BloP_E(#,f;-1)-0Blo_E(#.f;_1)-1BloS_E(#.f;_1) }* (where
1 <i <4 and # represents a particular phase).

5 Final notes

The use of phases f;_1 allows to identify, control and code gliders from
initial conditions in Rule 110. Some questions arise over the universality
of Rule 110; one of them is determining if the periodic right side will
become periodic into the tape of the CTS. In this case, could we find a
periodicity on the tape? How can be connected equivalent Turing ma-
chines to CTS? Some variants may be Turing machines [40] and circular
Post’s machines [41, 42].

Eventually, futures problem to solve in Rule 110 are the implementa-
tion of an specific Turing machine using the glider system and looking for
possibilities to implement a universal and self-reproducing constructor.

Nowadays, some investigations have found important and related
works around of the universality in Rule 110 [43].17 In the case of the
CTS, there are some solved problems like a Fibonnaci sequence done by
Chapman (January 2003). On the other hand, Neary and Woods in [44]
show that Cook’s machine can run in a polynomial time. Morita in [35]
proofs how to implement an explicit halt condition in the CTS and how
a partitioned CA may simulate any CTS.

Finally, in this paper we have reproduced the necessary components
and their initial conditions for a CTS working in Rule 110; explaining as

17 A list of papers related in Rule 110 and its universality is presented in
http://uncomp.uwe.ac.uk/genaro/Rule110.html

well each stage of the evolution space with several details, obtaining a
successful partial computation; writing the sequence 1110111 on the tape
and a leader component at the end with two solitons. This reconstruction
is performed in an evolution space of 56,240 cells in 57,400 generations
(3,228,176,000 cells); running on a computer Pentium II to 233 mhz,
operating system OpenStep and 256MB of RAM (February 2003).18

Acknowledgements

In special to Matthew Cook for his kind help four years ago with use-
ful commentaries and for the last interview in Zurich (June 2007). To
Kenichi Morita and Martin Davis by their commentaries and close pa-
pers. Also, the first author thanks a previous support by CONACyT with
registry number 139509 and an actual one by EPSRC grant reference
EP/D066174; and the third author thanks the support of CONACyT
with reference number CB-2006-1/59422.

References

1. Cook, M. (2004) Universality in Elementary Cellular Automata, Complez
Systems 15 (1) 1-40.

2. Wolfram, S. (2002) A New Kind of Science, Wolfram Media, Inc., Cham-
paign, Illinois.

3. Martinez, G.J., McIntosh, H.V., Seck Tuoh Mora, J.C. & Chapa Vergara,
S.V. (2008) Determining a regular language by glider-based structures
called phases f;-1 in Rule 110, Journal of Cellular Automata 3 (3) 231—
270.

4. Cook, M. (1999) Introduction to the activity of rule 110 (copyright
1994-1998 Matthew Cook), http://w3.datanet.hu/~cook/Workshop/
CellAut/Elementary/Rule110/110pics.html

5. Gardner, M. (1970) Mathematical Games - The fantastic combinations
of John H. Conway’s new solitaire game Life, Scientific American 223
120-123.

6. Wolfram, S. (1986) Theory and Aplications of Cellular Automata, World
Scientific Press, Singapore.

7. Lindgren, K. & Nordahl M. (1990) Universal Computation in Simple One-
Dimensional Cellular Automata, Complex Systems 4 229-318.

8. Griffeath D. & Moore C. (eds.) (2003) New Constructions in Cellular
Automata, Oxford University Press.

9. Mclntosh, H.V. (1999) Rule 110 as it relates to the presence of gliders,
http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html

18 http://uncomp.uwe.ac.uk/genaro/rule110/ctsRule110.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

Martinez, G.J., McIntosh, H.V. & Seck Tuoh Mora, J.C. (2003) Production
of gliders by collisions in Rule 110, Lecture Notes in Computer Science
2801 175-182

Martinez, G.J., McIntosh, H.V. & Seck Tuoh Mora, J.C. (2006) Gliders in
Rule 110, Int. J. of Unconventional Computing 2 (1) 1-49.

Martinez, G.J. & McIntosh, H.V. (2001) ATLAS: Collisions of gliders like
phases of ether in Rule 110, http://uncomp.uwe.ac.uk/genaro/papers.
html

McIntosh, H.V. (2000) A Concordance for Rule 110, http://delta.cs.
cinvestav.mx/~mcintosh/oldweb/pautomata.html

Martinez, G.J., McIntosh, H.V., Seck Tuoh Mora, J.C. & Chapa Vergara,
S.V. (2007) Rule 110 objects and other collision-based constructions, Jour-
nal of Cellular Automata 2 (3) 219-242.

McIntosh, H.V. (1991) Linear cellular automata via de Bruijn diagrams,
http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html
Voorhees, B.H. (1996) Computational analysis of one-dimensional cellular
automata, World Scientific Series on Nonlinear Science, Series A, Vol. 15.
Voorhees, B.H. (2008) Remarks on Applications of De Bruijn Diagrams
and Their Fragments, Journal of Cellular Automata 3 (3) 187-204.

von Neumann, J. (1966) Theory of Self-reproducing Automata (edited and
completed by A. W. Burks), University of Illinois Press, Urbana and Lon-
don.

Codd, E.F. (1968) Cellular Automata, Academic Press, Inc. New York and
London.

Banks, E.R. (1971) Information and transmission in cellular automata,
PhD Dissertion, Cambridge, MA, MIT.

Smith III, A.R. (1971) Simple computation-universal cellular spaces, J. of
the Assoc. for Computing Machinery 18 339-353.

Berlekamp, E.R., Conway, J.H. & Guy, R.K. (1982) Winning Ways for
your Mathematical Plays, Academic Press, vol. 2, chapter 25.

Lindgren, K. & Nordahl, M.G. (1990) Universal Computation in Simple
One-Dimensional Cellular Automata, Complex Systems 4 229-318.
Shannon, C.E. (1956) A Universal Turing Machine with Two Internal
States, Automata Studies, Princeton University Press, 157-165.
Adamatzky, A. (ed.) (2003) Collision-Based Computing, Springer.

Davis, M. (ed.) (1994) Solvability, Provability, Definability: The Collected
Works of Emil L. Post, Birkhduser Boston.

Post, E.L., Absolutely Unsolvable Problem and Relativity Undecidable
Propositions, 345-441, in [26].

Davis, M. (ed.) (1965) The Undecidable, Raven Press Books.

Turing, A.M. (1936) On Computable numbers, with an application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society
42 (2) 230-265. 1937 Corrections, Ibid 43 544-546.

Minsky, M. (1967) Computation: Finite and Infinite Machines, Prentice
Hall.

Cocke, J. & Minsky, M. (1964) Universality of Tag Systems With P = 2,
Journal of the Association for Computing Machinery 11 (1) 15-20.

32.

33.

34.

35.

36.

37.
38.
39.

40.

41.

42.

43.

44.

45.

Post, E.L. (1943) Formal reductions of the general combinatorial decision
problem, American Journal of Mathematics 65 (2) 197-215.

Aandreraa, S. & Belsnes, D. (1971) Decision problems for tag systems,
Journal of Symblic Logic 36 (2) 229-239.

Minsky, M. (1961) Recursive unsolvability of Post’s problem of tag and
other topics in the theory of Turing machines, Annals of Mathematics 74
437-455.

Morita, K. (2007) Simple universal one-dimensional reversible cellular au-
tomata, Journal of Cellular Automata 2 159-166.

Martinez, G.J. (2004) Introduction to OSXLCAU21 System, http://
uncomp.uwe.ac.uk/genaro/papers.html

Kolakoski, W. (1966) Problem 5304. Amer. Math. Monthly 73 681-682.
Giles, J. (2002) What kind of science is this?, Nature 417 216-218.
Martinez, G.J. (2004) Introduction to Rule 110, http://uncomp.uwe.ac.
uk/genaro/papers.html

Arbib, M.A. (1969) Theories of Abstract Automata, Prentice-Hall Series
in Automatic Computation.

Kudlek, M. & Rogozhin, Y. (2001) New Small Universal Post Machine,
Lecture Notes in Computer Science 2138 217-227.

Kudlek, M. & Rogozhin, Y. (2001) Small Universal Circular Post Machine,
Computer Science Journal of Moldova 9 (25) 34-52.

McIntosh, H.V. (2002) Rule 110 Is Universal!, http://delta.cs.
cinvestav.mx/~mcintosh/oldweb/pautomata.html

Turlough, N. & Woods, D. (2006) P-completeness of cellular automaton
Rule 110, Lecture Notes in Computer Science 4051 132-143.

Wuensche, A. (1999) Classifying Cellular Automata Automatically, Com-
plezity 4 (3) 47-66.

Appendix. Initial condition to reproduce a CTS in
Rule 110

This initial condition is a long chain moreover it is available from a dig-
ital file (ctsR110.txt) in http://uncomp.uwe.ac.uk/genaro/rulel10/
ctsRulel110.html.

Then the succession of components is given in the next table. This

succession must be reading up-down and left-right. Every letter e repre-
sents an ether sequence in phase f;_1 therefore just we must write it as
e (where e represents e = 11111000100110).1?

19 http://uncomp.uwe.ac.uk/genaro/rule110/listPhasesR110.txt

left center right
...=217e- |1Ele_C3(A,f;_1)-|SepInit_ EE(C,f3_1)-
4_AY(F2)-|e- 1Blo_EP(C, fy-1)-
649¢- 3A(f;1)- Sepnit_EE(C,f5_1)-
4_AY(F1)- 1Blo_EP(C,f_1)-
649e- 0Blo_E(C,f;-1)-
4_A*(F3)- 1Blo_ES(A,f;1)-
649e- Seplnit_EE(A.,f3_1)(2)-
4_AY(F2)- 1Blo_EP(F.f; 1)-
649e- SepInit_EE(A.f3 1)(2)-
4_AY(F1)- 1Blo_EP(F.f; _1)-
649e- 0Blo_E(E,f;-1)-
4_A*(F3)- 1Blo_ES(C,f41)-
216e- e-
SepInit_EEr(B,f; _1)(2)-
1Blo_EP(F f5_1)-
e
Seplnit_EE(B,f;-1)(2)-
217e-. ..

Finally our reconstruction has the next explicit sequence of bits; dis-
played by each particular element. We are omitting in the type trivial
repetitions of the same sequence, for instance when there are ether con-
figurations. In this case, ne means n copy of e ether chains.

.- 217e = 217e(f; 1)

4_A*(F2) = 1111100011101110001001101111100010011011111000100110111110001

0011011111000100110111110001001101111100010011011111000100110
1111100010011011111000100110111110001001101111100010011011111
0001001101111100010011011111000100110111110001001101111100010
0110111110001001101111100010011011111000100110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111101110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111100010011011111000100
1101111100010011011111000100110111110001001101111100010011011
1110001001101111100010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000100110111010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000100110111110001001101111100010011011111000100110111
1100010011011111000100110111110001001101111100010011011111000

1001101111100010011011111000100110111110001001101111100010011
0111110001001101111100010011011111000100110111110001001101111
1000100110111110001110111000100110

649¢ = 649¢(f; 1)

4_A*(F1) = 1111101110111110001001101111100010011011111000100110111110001
0011011111000100110111110001001101111100010011011111000100110
1111100010011011111000100110111110001001101111100010011011111
0001001101111100010011011111000100110111110001001101111100010
0110111110001001101111100010011011111000100110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101110100110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111100010011011111000100
1101111100010011011111000100110111110001001101111100010011011
1110001001101111100010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000111011100010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000100110111110001001101111100010011011111000100110111
1100010011011111000100110111110001001101111100010011011111000
1001101111100010011011111000100110111110001001101111100010011
0111110001001101111100010011011111000100110111110001001101111
10001001101111101110

649¢ = 649¢(f; 1)

4_A*(F3) = 1111100010011011101001101111100010011011111000100110111110001
0011011111000100110111110001001101111100010011011111000100110
1111100010011011111000100110111110001001101111100010011011111
0001001101111100010011011111000100110111110001001101111100010
0110111110001001101111100010011011111000100110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111100011101110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111100010011011111000100
1101111100010011011111000100110111110001001101111100010011011
1110001001101111100010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000100110111110111011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001

1011111000100110111110001001101111100010011011111000100110111
1100010011011111000100110111110001001101111100010011011111000
1001101111100010011011111000100110111110001001101111100010011
0111110001001101111100010011011111000100110111110001001101111
1000100110111110001001101110100110

649¢ = 649¢(f,_1)

4_A*(F2) = 1111100011101110001001101111100010011011111000100110111110001
0011011111000100110111110001001101111100010011011111000100110
1111100010011011111000100110111110001001101111100010011011111
0001001101111100010011011111000100110111110001001101111100010
0110111110001001101111100010011011111000100110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111101110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111100010011011111000100
1101111100010011011111000100110111110001001101111100010011011
1110001001101111100010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000100110111010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000100110111110001001101111100010011011111000100110111
1100010011011111000100110111110001001101111100010011011111000
1001101111100010011011111000100110111110001001101111100010011
0111110001001101111100010011011111000100110111110001001101111
1000100110111110001110111000100110

649¢ = 649¢(f,_1)

4_A*(F1) = 1111101110111110001001101111100010011011111000100110111110001
0011011111000100110111110001001101111100010011011111000100110
1111100010011011111000100110111110001001101111100010011011111
0001001101111100010011011111000100110111110001001101111100010
0110111110001001101111100010011011111000100110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101110100110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111100010011011111000100
1101111100010011011111000100110111110001001101111100010011011
1110001001101111100010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001

1011111000111011100010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000100110111110001001101111100010011011111000100110111
1100010011011111000100110111110001001101111100010011011111000
1001101111100010011011111000100110111110001001101111100010011
0111110001001101111100010011011111000100110111110001001101111
10001001101111101110

649¢ = 649¢(f 1)

4_A*(F3) = 1111100010011011101001101111100010011011111000100110111110001
0011011111000100110111110001001101111100010011011111000100110
1111100010011011111000100110111110001001101111100010011011111
0001001101111100010011011111000100110111110001001101111100010
0110111110001001101111100010011011111000100110111110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111100011101110001001101
1111000100110111110001001101111100010011011111000100110111110
0010011011111000100110111110001001101111100010011011111000100
1101111100010011011111000100110111110001001101111100010011011
1110001001101111100010011011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000100110111110111011111000100110111110001001101111100
0100110111110001001101111100010011011111000100110111110001001
1011111000100110111110001001101111100010011011111000100110111
1100010011011111000100110111110001001101111100010011011111000
1001101111100010011011111000100110111110001001101111100010011
0111110001001101111100010011011111000100110111110001001101111
1000100110111110001001101110100110

216¢ = 216e(f;_1)

1Ele_C5(A,f;-1) = 1111100000010011011111000100110111110001001101111100000
0100110111110001001101111100010011011111000000100110111
1100010011011111000111011010

e=e(f; 1)

A3(f;_1) = 111110111000100110

SepInit_EE(C,f3_1) = 1111100010011001000111001100011100110111110001001101
0011111110101111100010011011111000100110111110001001

1011111000100110010001110011000111110001001101111100
0100110011101110011000100110111110001001101000110100
1100010011011111000100110111110001001101100010111110
0010011011111001111101110011011111000100110111110001
0011011101101110 1011100110

1Blo_EP(C,f;_1) = 1111110011110001001101111100011101111101001111100010011
0111110001001101110001110110001001101111100010110100001
1011111000100110111110001001101111110000110111001101111
1000100110111110001001101111100111000001001101110110111
0101110011011111000100110111110001001101110111001100001
0011011111000101101000011011111011111101111101011111000
1001101111100010011011111001111101110011011111000100110
11111000100110111011011101011100110

SepInit_EFE(C,f3_1) = 1111100010011001000111001100011100110111110001001101
0011111110101111100010011011111000100110111110001001
1011111000100110010001110011000111110001001101111100
0100110011101110011000100110111110001001101000110100
1100010011011111000100110111110001001101100010111110
0010011011111001111101110011011111000100110111110001
00110111011011101011100110

1Blo_EP(C,f;_1) = 1111110011110001001101111100011101111101001111100010011
0111110001001101110001110110001001101111100010110100001
1011111000100110111110001001101111110000110111001101111
1000100110111110001001101111100111000001001101110110111
0101110011011111000100110111110001001101110111001100001
0011011111000101101000011011111011111101111101011111000
1001101111100010011011111001111101110011011111000100110
11111000100110111011011101011100110

0Blo_E(C,f;_1) = 11111100111100010011011111000100110111110001001101111100
01110110010110111110111111011111010111110000101100100110
11111000100110111110001001101110111001100001001101111100
01001101111100010011011111100111100010011011111000100110
11111000100110111110011100000100110111110001001101111100
01001101111100111110111001101110001110110001001101111100
01011010000110111110001001101111100010011011111100001101
11001101111100010011011111000100110111110011100000100110

1EH0hES(A1ﬁ,1):: 1110110111010111001101111100010011011111000100110111011

1001100001001101111100010110100001101111101111110111110
1011111000100110111110001001101111100111110111001101111
1000100110111110001001101110110111010111001101111110011
1100010011011111000100110111110001001101111100011101100
1011011111011111101111101011111000010110010011011111000
1001101111100010011011101110011000010011011111000100110
11111000100110111111001111000100110

SepInit_EE(A,f3_1)(2) = 11111000100110000001111100000111110101111100010011
01111111111000111110001001101111100010011011111000
10011011111000100110000001111100000111110001001101
11110001001101100010111110001001101111100010011001
10001111110001001101111100010011011111000100110111
00011101100010011011101110011000010011011111000100
11011111000100110111111001111000100110

1Blo_EP(F,f;_1) = 1111101001101111001101111100010011011111001110000010011
0111110001001101111100010110100001101111101111110111110
1011111000100110111110001001101111100111110111001101111
1000100110111110001001101110110111010111001101111110011
1100010011011111000100110111110001001101111100011101100
1011011111011111101111101011111000010110010011011111000
1001101111100010011011101110011000010011011111000100110
11111000100110111111001111000100110

Seplnit_EE(A,f;_1)(2) = 11111000100110000001111100000111110101111100010011
01111111111000111110001001101111100010011011111000
10011011111000100110000001111100000111110001001101
11110001001101100010111110001001101111100010011001
10001111110001001101111100010011011111000100110111
00011101100010011011101110011000010011011111000100
11011111000100110111111001111000100110

1Blo_EP(F,f;_1) = 1111101001101111001101111100010011011111001110000010011
0111110001001101111100010110100001101111101111110111110
1011111000100110111110001001101111100111110111001101111
1000100110111110001001101110110111010111001101111110011
1100010011011111000100110111110001001101111100011101100
1011011111011111101111101011111000010110010011011111000
1001101111100010011011101110011000010011011111000100110
11111000100110111111001111000100110

0Blo_E(E,f4_1) = 11111010011011110011011111000100110111110001001101111100

01000110011000111110000101100100110111110001110111110010
11111000100110111110001001101111100011101100101101111100
01001101111100010011011111010011011110011011111000100110
11111000100110111011011101011100110111110001001101111100
01001101110111001100001001101111100010110100001101111101
11111011111010111110001001101111100010011011111001111101
11001101111100010011011111000100110111011011101011100110

1Eﬂ0hES(CLﬁ,1)::1111110011110001001101111100010011011111000100110111110

e=-e(f1-1)

0011101100101101111101111110111110101111100001011001001
1011111000100110111110001001101110111001100001001101111
1000100110111110001001101111110011110001001101111101001
1011110011011111000100110111110001001101111100010001100
1100011111000010110010011011111000111011111001011111000
1001101111100010011011111000111011001011011111000100110
11111000100110111110100110111100110

Seplnit_EE(B,f;_1)(2) = 11111010000111001100011100110001001101111100010000

00011011100110111110001001101111100010011011111000
10011011111010000111001100011100110111110001001101
11110000101100100110111110001001101111101110101110
00110111110001001101111100010011011111000111011111
00101111100011101111101001111100010011011111000100
110111110001000111110110

1Blo_EP(F,f3_1) = 1111100010011011100010111100010011011111000100111111100

e =e(f;-1)

0111110001001101111100010011011000001001100010011010001
1010011000100110111110001001101111100010011111001101111
1000100110111110001001101111100011100001110001111100010
0011111011011111000100110111110001001101111100010011011
1110011100000100110100011010011000100110011000111111000
1001101111100010011011111000111011111010011111000100110
11111000100110111110001000111110110

SepInit_EE(B,f;_1)(2) = 11111010000111001100011100110001001101111100010000

00011011100110111110001001101111100010011011111000
10011011111010000111001100011100110111110001001101

11110000101100100110111110001001101111101110101110
00110111110001001101111100010011011111000111011111
00101111100011101111101001111100010011011111000100
110111110001000111110110

217e = 217e(f; 1) - ...

