Int. Journ. of Unconventional Computing, Vol. 17, pp. 31-60 ©2021 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

Computing with Modular Robots

GENARO J. MARTINEZY2* ANDREW ADAMATZKY?, RICARDO Q.
FIGUEROA!, ERIC SCHWEIKARDT?3, DMITRY A. ZAITSEV?,
IVAN ZELINKA® AND LUz N. OLIVA-MORENO®

L Artificial Life Robotics Laboratory, Escuela Superior de Compuito,
Instituto Politécnico Nacional, México
2Unconventional Computing Laboratory, University of the West of England,
Bristol, United Kingdom
3Modular Robotics, Denver, United Sates of America
4Odessa State Environmental University, Odessa, Ukraine
SFakulta Elektrotechniky a I nformatiky, Technicka Univerzita Ostrava, Czechia
5Unidad Profesional Interdisciplinaria de Ingenieria Campus Hidalgo,
Instituto Politécnico Nacional, México

Received: July 12, 2021. Accepted: September 2, 2021.

Propagating patterns are used to transfer and process information in
chemical and physical prototypes of unconventional computing devices.
Logical values are represented by fronts of traveling diffusive, trig-
ger or phase waves. We apply this concept of pattern based computa-
tion to develop experimental prototypes of computing circuits imple-
mented in small modular robots. In the experimental prototypes the
modular robots Cubelets are concatenated into channels and junction.
The structures developed by Cubelets propagate signals in parallel and
asynchronously. The approach is illustrated with a working circuit of a
one-bit full adder. Complementarily a formalization of these construc-
tions are developed across Sleptsov nets. Finally, a perspective to swarm
dynamics is discussed.

Keywords: Robotics, unconventional computing, cellular automata, competing
patterns, Cubelets, binary adder, Sleptsov net, networks

1 INTRODUCTION

One of the aims of the unconventional computing is to uncover novel comput-
ing substrates and protocols of computation in these [6]. Not necessarily the

* Contact author: E-mail: gjuarezm@ipn.mx

31

32 GENARO J. MARTINEZ

substrates and protocols should be efficient or optimal but they might open
our horizons of understanding on how chemical and physical system pro-
cess information and how a computation can be embedded into novel smart
materials and intelligent structures. The unconventional computation can be
applied in the intelligent structures — modular designs of buildings where
a computation is implemented by building blocks, their ensembles and parts
of the building [9]. The smart building structures do echo up to some degree
von Neumann original ideas on machines constructing machines [46].

In experiments we used modular robots Cubelets. These robots are flex-
ible, modular and easy to assemble and reconfigure [42,43]. The robots are
capable for transmitting information between each other and performing a
wide range of actions. The contribution in this paper is to make the robotic
structures to implement computation by using a framework of computation
by propagating and competing patterns. Implementation of Boolean gates
with propagating patterns have been explored before in a context of pre-
cipitating chemical computers [3], slime mould and plant gates [7, 8], and
gates implemented with swarms of soldier crabs [22]. The competing pat-
terns were first introduced in [28, 34] in a model of a chaotic Life-like cel-
lular automaton. The propagating patterns are used to represent binary infor-
mation, and the computation is implemented by the patterns at the meeting
sites. In the experimental setups presented concatenations of Cubelets repre-
sent communication channels — where patterns propagate, and the patterns
are represented by illumination of the robots. As a complementary contribu-
tion in parallel study we simulate Cubelets robots by Sletptsov nets [53] to
verify their behavior and formalism. Finally, we explore some aspect where
Cubelets behavior could walk to global swarm phenomena [47].

2 MODULAR ROBOTSCUBELETS

Cubelets are modular robots [42, 43]. Theoretically, we can have an infi-
nite number of robots which can be constructed. Therefore we can say that
Cubelets define a formal language as follows.

Let X ={0,..., 17} the alphabet of Cubelets robots (Table 1), where
each of one defines a robot by itself. We can say that ¥* represents a uni-
verse of Cubelets. Thus, we have two disjoint sets of robots: ¢ and ZyE.
3 C X* is a set of functional robots and Xng € X* is a set of non func-
tional robots, e.g. robots without a battery. Functional robots are assembled
in 22 and encoded as a sequence of symbols. Thus, a functional robot can
be expressed as a one-dimensional robot w € X*. As known, Cubelets work
in three dimensions and for to get a practical representation and codification
we will concatenate every coordinate as a string. This way, we will to cod-

COMPUTING WITH MODULAR ROBOTS 33

Cubelets
distance di
sense brightness br
knob kn
temperature te
battery ba
Bluetooth bl
passive pa
think blocker bo
inverse in
minimum mi
maximum ma
threshold th
rotate ro
drive dr
action bar graph bg
speaker sp
flashlight fl
TABLE 1

Classes of Cubelet robots.

ify each robot as a symbolic equation and this regular expression shall be
practical for construct a robot. Hence every Cubelet is defined recursively
and therefore the union, juxtaposition and Kleene closer of every cube is a
regular expression [31, 33].

In Figure 1, we can see how this three-dimensional space is labelled and
can be represented as a string, as follows:

w = X0,0,0X1,0,0 * * * Xn—1,0,0X0,1,0 * * * Xn—1,1,0X0,m—-1,0X1,m-1,0 * * * Xn—1,m—1,0

+++X0,0,1 " Xn—1,m—-1,p—1-

Later, we will identify every face to each cube. It is illustrated in Figure 2,
where we can see mainly the front position which is the most important to
fix and to get a correct position of the Cubelet which is recognized for the
front (F) orientation. In this case, we show this labelling for Cubelets that
are used to construct our circuit. They are Cubelets flashlight (f1), distance
(di), brightness (br), battery (ba), inverse (in), blocker (bl). This way, a cod-
ification base is denoted as (F, N, W). If the position change hence we will
rotate the cube and update these three parameters. If a coordinate has not a
cube then we will represent this one with a blank (B) which represents an
empty string of X*.

This way, the next string determines a robot walking w; when the distance
Cubelet find an object close. To represent a robot with a string we should
select two first letter from the Table 1, for example,

34

GENARO J. MARTINEZ

FIGURE 1
Three-dimensional array that is represented as a string.

* The robot that moves as a car weqr (See Figure 3). It has a volume (total
area) of 3 x 1 x 1 cubes with a mass (total number of Cubelets) of 3
cubes. The expression to construct this robot is:

W) paFNW) | i (SFW)
bai v - digog) -

Wscar = dr(z oB
* A robot that detects a fire (see Figure 4). It has a volume of 3 x 1 x 1
cubes with a mass of 3 cubes. The expression to construct this robot is:

(S,F,W) (F,N,W) (S,F,W)
wiire = flz00) ba(100) -1€0.0,0) -

» A robot that acts as an autonomous car* avoiding obstacles and chang-
ing its direction of movement (see Figure 5). Itasa volume of 3 x 2 x 3
cubes with a mass of 8 cubes. The expression to construct the robot is;

(FNW)Y (i (FNW) g (FNW) i (F.NW)
wacar = (B fliog)) - @i ~digig ~digie))-

W,B,N (F.NW W,B,N SF.W
(dr((z,l,l)) ba(l 1.1)) dr ((o 11))) -(B- (dr((l,LZ))))'

* Autonomous car with Cubelets. https://youtu.be/Q5ueOMFNhwQ

COMPUTING WITH MODULAR ROBOTS 35

N N N N
B\ A/WB\ A/WB\‘ A/WB\ ‘/W
E F E F E F E F
y f ¥
S S S S
@ (b) © (d)
N N N

S g gli=—
R
E {'1 ¥ F E \§"" = F E \5L F E .:} —F

y y f y
s s s s
(e) U] (@ (h)
N
&=
B [k M «—
Uik
E \o 1\ i F
O
?
s
(0]
FIGURE 2

Labelling faces in Cubelets. They are represented following the three-dimensional cardinal
points as: N-north, S-south, E-east, W-west, B-back, F-front. Thus we have (a) distance, (b)
brightness, (c) temperature, (d) battery, (e) rotate, (f) drive, (g) speaker, (h) flashlight, and (i) bar
graph. For the case (j) blocker, (k) inverse, and (I) passive, here is not necessary label any face
because the whole cube is symmetric.

FIGURE 3
Cubelet robot simple car wscar -

FIGURE 4
Cubelet robot detector wfjre.

* A robot that seems as a caterpillar.” This one avoid obstacles and
change its direction automatically (see Figure 6). Particularly this robot

T A robotic caterpillar with Cubelets. https:/youtu.be/E9NVEPK3UFY

36

GENARO J. MARTINEZ

FIGURE 5
Cubelet robot autonomous car wacar -

is extendable and you can concatenate parts of it as long as you want. It
asavolume of 2 x 2 x 4 cubes with a mass of 7 x 2 cubes. Particularly,
the robot weaterpiliar is constructed from two independent robots. Also,
it is assembled across a reflection and extensions. The basic structure
is defined in a volume of 2 x 2 x 4 Cubelets but this basic structure is
not the caterpillar form, then we need a reflection of the basic structure
and connect both structures with 4 Lego adapters and 2 Lego bars, thus
we have 2 x (7 x 2) Cubelets to yield finally the most small caterpil-
lar. To get extensions and increase the length of the caterpillar we need
connect 2 x 3 Cubelets for each side, the basic structure for the exten-
sion is determined by one battery, a rotator and a light Cubelets, and its
reflection will be connected on the other side. So to stabilize the robot
we need connect additional Lego adapters in the top. The expression to
construct the robot is:

Weaterpillar = (B - di((ii,?‘d)w)) -((B- di((fb'?l]:)W)) : (d|((('):1N0)W) : pa((]'_:]_Nl)W))) :

(N,F,W) (E,N,B) (E,N,B)
((B-bag ;") (flgrz) ~rogiz N

A robot capable of simulate logical gates* just with Cubelets (Figure 7).
This one use a head that read values from other Cubelets moving in two
directions. It is a robot wiy with a volume of 3 x 3 x 3 cubes with a
mass of 9 cubes. The robot wg is defined for the next expression:

-(N,B,E S F.E S F.E E,B,S

wig = (B-difig)) - (B-by(ro) (B-rogryy) - (drigs -
(FN.E) 1 (EBS (EB.S pa(FNE) 4 (EB.S
bag 51" Aoy) - (Arenzy” -bags5) " - dress”)-

* Logic gates with Cubelets: NAND and XOR gates. https://youtu.be/O2XSK33VjTU

COMPUTING WITH MODULAR ROBOTS 37

FIGURE 6
Cubelet robot caterpillar weater pillar -

FIGURE 7
Cubelet robot performing logic gates.

But the robot wig needs another robot which represent the ‘tape’ and
it is represented by a second robot wig tape With a volume of 10 x 1 x
1 cubes and a mass of 10 cubes. To get this robot we need the next
expression:

(S.F,E) (s F.E) SF,E) 4:(E,F,B)

wig tape = (D3 0" - Fl(T0.0) d'(200) -bo,0,0) - fI(400) ~digso)
E) . i (E:F-B) . pa(SFE)y

boe,0.0) - f |(7 0.0 " digoo - bagoo)

In [17], we show a robotic Turing machine constructed from Cubelets
and a lot of Lego bricks.

Figure 8 displays two snapshot of the machine. Particularly, CULET is
a robot that needs a lot of different Lego bricks. But, here we explain
what is the equation to get this robot wry. It is defined for the next

TCULET a robotic Turing machine. https://www.comunidad.escom.ipn.mx/ALIROB/CULET/

38 GENARO J. MARTINEZ

FIGURE 8
Robotic Turing machine constructed with Cubelets and Lego bricks.

expression:
- (N,BE - (S F,.E S F,E
wrw = (B dii57) - (B difs 1)) - (bl -
(S,F,E) (S,F,E) (W,N,F) (E,B,S) (E,B,S)
fliiyy -bag iy - 1011y) - (drgsyy” - Paw2y - drp 7))
Our goal is to find a string w such that w belongs to an equivalent com-
putable system made only with Cubelets. We proof how logical circuits can

be constructed with Cubelets and the computation is performed by propagat-
ing patterns.

3 COMPUTING WITH PROPAGATING PATTERNS

In 2008 we constructed a Life-like cellular automaton capable for simulat-
ing a propagating of patterns on a feedback of channels and implemented
a majority gate in this automaton [27]. Later we designed additional sets
of gates and a developed a binary full adder with the propagating pat-
terns [28, 34].

Cellular automata are often used to design unconventional computing in
several ways. Historically, several protocols of handling signals propagating
in cellular automata have been proposed by von Neumann era [46]. These
were advanced by a two-dimensional cellular automaton with less states by
Codd [12, 25], the WireWorld invented by Silverman [13], and the reversible
computers designed by Morita [36]. With regards to one-dimensional cellular
automata, the exhaustive analysis of signal interactions was done by Mazoyer
[30] and some rules working with simple and compact signals have been

COMPUTING WITH MODULAR ROBOTS 39

o
AHOERHSHEAHE RS HERHE A EHY

HHESRHSHEAHE A AR HHY
Ho]

EE N S H E S S S H H HHHHH :: !:!:!:!:!:!:l:!:!:l:!:!:l:!:!:l:!:!:l:!:!:l;‘:
(c) (d)
FIGURE 9
Patterns propagating by particle reaction in information channels with the Life-like rule
B2/S2345. (a) The initial condition with two particles before they collide. This way, snapshots

(b,c,d) beginning of the propagation of symmetric and asymmetric patterns in (b) 37 iterations,
(c) 114 iterations, and (d) 208 iterations after the collision.

reported by Mitchell et al. [32]. Recently Martinez et al. [29, 35] proposed a
cellular automaton with memory capable of simulating logic gates with just
one particle. A complimentary version of representing information in cellular
automata space is based on a composition of signals interpreted as particles
(gliders, waves, mobile-self localisation) [2,5, 6, 20].

Computing with propagation patterns exploits the dynamics of propa-
gating patterns that encode binary value, these patterns emerge as chaotic
regions. They are constructed by streams of particles traveling and collid-
ing with a wall, defining symmetric or asymmetric patterns propagating and
competing for the space. To geometrically constrain the patterns and time
their collisions we design a network of channels, typically using arrange-
ments as a n-junction function. Fronts of propagating phase (excitation) or
diffusive waves represent signals, the values of logical variables. When fronts
interact at the junctions some fronts annihilate or new fronts emerge. The pat-
terns propagating in the output channels represent results of the computation.
Using this paradigm a range of logic gates have been implemented in [27]
and a binary full adder constructed in [28,34]. To design a logic circuits with
Cubelets we will use the Life rule B2/S23458 , the cellular automata which
exhibits a chaotic behaviour, and is governed by a semi-totalistic function
described as follows. Each cell takes two states ‘0’ (‘dead’) and ‘1’ (“alive’),
and updates its state depending on the states of its eight closest neighbour as
follows,

§ Majority adder implementation in Life rule B2/S2345. https://www.comunidad.escom.ipn.mx/
genaro/Diffusion_Rule/Life_B2-S2345.html

https://www.comunidad.escom.ipn.mx/genaro/Diffusion_Rule/Life_B2-S2345.html
https://www.comunidad.escom.ipn.mx/genaro/Diffusion_Rule/Life_B2-S2345.html

40 GENARO J. MARTINEZ

—L] —Hd —Hd —L]

(a) (b) (c) (d)

FIGURE 10

The Life-like rule B2/S2345 evolves on a Moore neighbourhood. (a) Shows a condition where
the sum of the neighbours do not permit a birth in the next time when the central cell is
0, it is the function f(0,0,0,0,0,0,1,0,0) — 0. (b) Shows a condition where the sum of
the neighbours permit a birth in the next time when the central cell is 0, it is the function
f(0,0,0,1,0,0,0,1,0) — 1. (c) Shows a condition where the sum of the neighbours permit a
survival in the next time when the central cell is 1, it is the function f(1,0,0,0,1,1,0,1,0) —
1. (d) Shows a condition where the sum of the neighbours do not permit a survival in the next
time when the central cell is 1, it is the function f(1,0,1,1,1,0,1,1,1) — 0.

1. Birth: a central cell in state O at time step t takes state 1 att + 1 if it
has exactly two neighbours in state 1.

2. Survival: a central cell in state 1 at time t remains in the state 1 at time
t + 1 if it has two, three, four or five live neighbours.

3. Death: any other case.

Figure 10 illustrates some relations to get a birth, a survival and death,
in the Moore neighbourhood. Cells in color white represent the symbol 0
and cells in color grey represent the symbol 1. Every relation determines the
central cell in the present time with their neighbours and the value for the
next time. The total number of relations is determined by 22,

Once a resting lattice is perturbed, patterns of states 1 emerge, grow and
propagate on the lattice (Figure 9). Boolean values are represented by reac-
tion of particles, positioned initially in the middle of channel, value 0 (Fig-
ure 9a up), or slightly offset, value 1 (Figure 9a down). The initial position
of the particles determine outcomes of their reaction. Particle corresponding
to the value 0 is transformed to a regular symmetric pattern (Figure 9b,c,d
up), similarly to “frozen’ waves of excitation activity [4]. Particle represent-
ing signal value 1 is transformed to transversally asymmetric patterns (Fig-
ure 9b,c,d down). Both patterns propagate inside the channel with constant
speed, advancing unit of the channel length per one step of a discrete time.

When patterns, representing values 0 and 1, meet at T -junctions they com-
pete for the output channel. Depending on initial distance between particles,
one of the patterns wins and propagates along the output channel. By con-
trolling these signals we have implemented a number of logic gates, such
as: AND, OR, NOT, FANOUT, DELAY, MAJORITY [28]. Figure 11 shows how
a MAJORITY gate has been implemented in the function B2/S2345. The

COMPUTING WITH MODULAR ROBOTS 41

; %},@%ﬂ%ﬁg
e

e

o

-

FIGURE 11

Three-valued MAJORITY gate implemented in the rule B2/S2345. From left to right:
MAJ(0,0,0) =0, MAJ(0,1,1) =1, MAJ(0,1,0) =0, MAJ(1,1,0) =1, MAJ(0,0,1) =
0, MAJ(1,0,1) =1, MAJ(1,0,0) =0, MAJ(1,1,1) = 1.

MAJORITY gate can be defined given three inputs a, b, and c [33], as fol-
lows: MAJ(a,b,c)=(aAb)v(aac)v(bac).

Implementation of MAJORITY gate is shown in Figure 11. The gate has
three inputs: North, West and South channels, and one output: East chan-
nel. Three propagating pattern, which represent inputs, collide at the cross-
junction of the gate. The resultant pattern is recorded at the output channel.

In other fields, the majority gates have been selected to design circuits in
quantum-dot cellular automata [21]. On the other hand, Fischer et al. in [18]
have implemented a spin-wave majority on an electromagnetic device.

4 CUBELETSCOMPUTING

4.1 Propagating signalswith Cubelets

The transmission of signals in Cubelets is across electrical current, values are
traveling when Cubelets are concatenated. This way, the distance Cubelet (di
in Table 1) produces a positive value (255 maximum) if an object is near
to it and close to O (minimum) if the object is far.! Figure 12 displays how
we can propagate and recognise signals with Cubelets robots. Figure 12a
shows the configuration to construct a lamp robot w = di -ba- fl and in
Figure 12b we activate the distance cube that transmit an integer value to
the rest of cubes yielding which the lightness cube change of state off to on.

I Cubelets AP1 Documentation. http://api.modrobotics.com/cubelets/index.html

42 GENARO J. MARTINEZ

g
]

(@) (b)

FIGURE 12

Activating and propagating signals with Cubelets. Binary values are represented if the lightness
Cubelet is in state off (as 0) and in state on (as 1). The high intensity represents the pattern as 1
and any other intensity as 0. This way, to conserve a high intensity we need to concatenate more
battery Cubelets with one or two lightness Cubelets. The binary values are initialized by the
value of a distance Cubelet (input data) and the result will be indicated by the value of lightness
Cubelets (output data).

Consequently to propagate this signal we need to concatenate more lightness
cubes and produce the configuration di - ba - (fl)*. Figure 12c shows the
initial configuration in state off and Figure 12d shows the configuration in
state on. We will note that the intensity of light is strong just in the first two
cubes whiles the illumination in the rest of the cubes is decreasing in intensity.
Therefore, we consider just high intensity as value 1 and 0 in any other case.
The regular expression to expand the signal should include a battery cube
di - (ba- fl)*.

4.2 Constructing circuitswith Cubelets

Now let us show how to construct logic gates from Cubelets using the Life-
like rule B2/S2345. The first and crucial element in our construction is the
implementation of a MAJORITY gate. Following the same topology as in the
Life-like rule B2/S2345 (see Figure 11) the MAJORITY gate is defined as the
robot:

wwmadgatel = (B* - ba((zb’,\ld)w)) -(B*- di((:l'?ld)w)) -(B*- f|((4'1:,’2’,\ld)w)) :

4 ¢ (F.NW) ENW) 5 (F W) g (FENOW) ¢ (FNW) g (W,N,F)
(B fligs0)) (agaey ~digae - floae - fleue - flasg)

4 F,N,W 4 F,N,W 4 - (F,N,W 4 F,N,W
B* 1G5 - B TG - B - dify e - (B* - ba;y)").

COMPUTING WITH MODULAR ROBOTS 43

© (@

FIGURE 13

Configurations of Cubelets robots that simulate a MAJORITY gate wy aJ. (a) Displays the main
configuration. (b) Shows an operation in wy aj With inputa = 1, b = 0, and ¢ = 0. (b) Displays
the configuration for a NOT MAJORITY gate wymay- (€) Shows an operation in wymag with
inputa=0,b=1,¢c=0.

So, the complementary robot necessary to process the output is defined by
the next expression:

(W,N,F) (F,N,W) (F N W) (F N, W)
wmAgateo =B brg o0 Fliz g™ - flgag - bagag -

For design a NOT MAJORITY gate it is constructed by adding an inverse
Cubelet in the output wire. It is defined by the next expression::

(W,N,F) F,N,W) (F,N W) (F N, W)
WNMAJgateo = B - brg 400 - 1N@7.40) - fIf @40 - fleug ~Pag40) -

Figure 13 shows the position of each Cubelet encoded in the strings wy a3
and wnmag. The configuration works identically as cellular automaton rule

44 GENARO J. MARTINEZ

FIGURE 14
A binary full adder made of Cubelets.

B2/S2345. We have three input channels (North, East, South) and one output
(West).”

Logical universality with Cubelets across this MAJORITY gate is shown
as follows. If we fix input ¢ = 0 then we get the AND gate and for c = 1 we
get the OR gate (Tabs. 2 and 3, respectively). To get a NAND Or NOR gate we
concatenate an inverse Cubelet (see Table 1), that represents the NOT gate.

Now is time to design a binary full adder robotic. We follow the same
idea which was used in the Life-like rule B2/S2345 [28, 34]. We use a cir-
cuit where a binary full adder can be constructed with three NOT MAJORITY
gates and two NOT gates, illustrated in Figure 15a. To handle this circuit
with Cubelets we need to preserve the routes of every signal. The Figure 15b
shows how we will propagate each signal. Every NOT MAJORITY gate is
labelled to recognise better each partial result and signals may be distributed
in parallel. Finally, the Table 4 displays each input, partial outputs (stages of
NOT MAJORITY gates) and the final results (sum and carry out).

Figure 14 provides a detailed view of the robot that represents the circuit
simulating the full binary adder with Cubelets. The robot is assembled of 39
Cubelets (17 flashlight, 10 battery, 5 distance, 3 brightness, 2 inverse, and 2

#A video showing all these operations is available in: https://youtu.be/v604-1iGDk0. The
source code to implement the MAJ gate is available in: https:/gist.github.com/RQF7/
87b89a3cf21bf2794a77112ea2bb6542.

https://gist.github.com/RQF7/87b89a3cf21bf2794a77112ea2bb6542
https://gist.github.com/RQF7/87b89a3cf21bf2794a77112ea2bb6542

COMPUTING WITH MODULAR ROBOTS

a b c|

0 0 0
0 1 0
1 0 0
1 1 1

TABLE 2
AND gate,c=0

oo

Ly
L
>. .

@

FIGURE 15

a ——o»|
| may r——— ¢,
in o
—> Cin
—» wma O sum

a b c|

0 © 0

0 1 1

1 0 1

1 1 1
TABLE 3
ORgate,c=1

(b)

45

(a) A circuit to implement a binary full adder based in NOT MAJORITY gates. (b) The diagram
for a full binary adder adapted for works with Cubelets robots.

albcn|~maj | ~maj; [~majs [Cou | sum
0]0] o 1 1 0 0 0
0ol 1 1 1 1 0 1
0|1 o 1 0 1 0 1
01 1 0 1 0 1 0
110/ 0 1 0 1 0 1
110 1 0 1 0 1 0
1110 0 0 0 1 0
1011 0 0 1 1 1

TABLE 4

Truth table of the binary full adder, show in Figure 15.

passive). The nature of Cubelets is preserved almost completely because you
need just reprogram two Cubelets to implement the adder: the input (flash-

light cube) and the output (brightness cube). The NOT MAJORITY gate is

implemented in the self cube and thus we avoid to use extra inverse cubes.
The code* for the flashlight cube (maj; in Figure 14) and brightness cube is
simple. If the flashlight has a value higher than (maxi mum/2) then the value

** The source code for wga is available from: https:/gist.github.com/RQF7/87b89a3cf21bf2794a77112ea2bh6542#

file-sensor-c

https://gist.github.com/RQF7/87b89a3cf21bf2794a77112ea2bb6542#file-sensor-c
https://gist.github.com/RQF7/87b89a3cf21bf2794a77112ea2bb6542#file-sensor-c

46 GENARO J. MARTINEZ

is equal to zero and maximum in any other case. Also, this NOT MAJORITY
gate is implemented in two passive cubes (maj, and majs in Figure 14).

Finally, we have the string wga Which defines a binary full adder with
Cubelets:

wea = (B dif 5" - (8% balf5") - (B° - 155" - (i -
baiiz) - flgag 0Oz - fliaae - B-brise - fliag -bagas)
(B flgiey B Hlagy) (in@so) - fligiy - fligas) - bagas) -
bogs.0) - fIGes B briGhy baly i) - fIGNG) - (B2 balf ™ -
digeey B fliseg) - (B2~ fli7g)" - B -bai 7)) - (ifgsg) -

(F,N,W) (F,N,W) (W,N,F) (E,N,B) (F,N,W) (F,N,W)
bai o) - flosoy - flaso B brsso iNeso: flzse - fliso

F,N,W 3 F,N,W 3 F,N,W 3 - (F,N,W
baG 5 ") - (B2 156" - (B% - ball o) - (B% - difi1)o)).

Figure 16 shows the set of initial conditions for each input and output for
wga. The computation is asynchronous and every input updates its output
changing the state of every distance cube. Finally, you can see a video of this
robotic binary adder in action from https://youtu.be/1ghpbPHnzPw.

5 COMPUTATIONSON CUBELETSBY SLEPTSOV NETS

Computing on cellular automata with propagating patterns can be simu-
lated directly by Infinite Petri nets using technique studied in [51, 55] and
extended for cellular automata with generalized neighborhood [52]. Here we
formalize Cubelets computing via modeling by Petri and Sleptsov nets the
composed Cubelets robots for logical gates. Petri nets is a known tool for
specification and verification concurrent processes [50]. Their generalization
based on multiple transition firing, called a Sleptsov net and capable of fast
computations [53], represents a graphical language for fine granulation mas-
sively parallel computing. We simulate Cubelets robots by Sletptsov nets to
verify their behavior.

Cubelets behavior have been specified using a great deal of intuitive per-
ception. This especially concerns assembled robots. Even in a simple case
of linear connection it is nontrivial process of signals transmission when a
battery is attached in the middle of line. When Cubelets are attached to many
or even to all facets of a cube, a special technique is required to completely
formalize behavior of single Cubelets and assembled robots. When we use
Cubelets as a game, probably it is not so significant. Though when we use
Cubelet robots as prototypes for real-life robots, especially designed for crit-
ical applications, the task of proving correctness of Cubelet robots behavior

COMPUTING WITH MODULAR ROBOTS 47

SUM .

sum =0

Crpacaall Cout =0

(b)

sum =gl

Cout =0 Co

sum =8

sum =0

[

()

FIGURE 16
Binary full adder wga for all inputs and outputs. We show every input and its results. (a) a = 0,
b=0,c=0, (b) 001, (c) 010, (d) 011, (e) 100, (f) 101, (g) 110, and (h) 111.

48 GENARO J. MARTINEZ

becomes significant. In the present section, a solution for a restricted class of
Cubelet robots which represent computations, is presented. The idea consists
in simulating Cubelet robots by Sleptsov nets.

In Section 4, to represent Cubelets computations, only configurations on
plane were considered and only the following classes of robots have been
employed: ba, di, fl, br, in, and the blank cube B. Thus only these Cubelets
are simulated by Sleptsov nets and we consider two-dimensional configura-
tions only. Note that Cubelet robots which simulate computations are unmov-
able. Though we believe that the technique can be generalized on moving
Cubelet three-dimensional robots which use all the specified classes of cubes.
Our motivation is a formal way of proving that the constructed robot imple-
ments a definite function. For the considered configurations of the majority
gates and adders, the simplest proof technique is the exhaustive search repre-
sented by truth table. A sequence of experiments with Cubelets organized in
complete accordance with the truth table proves that the robot functioning is
correct. We use the considered circuits as tests for our Sleptsov net verifica-
tion technique. It could be useful for bigger constructs as well to justify the
composition rules when definite Cubelet robots are applied as components to
compose bigger constructs.

As it was mentioned in previous sections, a threshold technique is applied
to obtain binary numbers from one byte counters which represent values of
distance and brightness. It seems that visual observation does not allow to tell
the brightness difference of a single unit that represents an additional point
of our motivation.

Cubelets are based on continuous processes of electrical signals transmis-
sion though the signal levels are represented by integer numbers in the range
0...255. For modeling computations, the switching processes are of interest
which are induced by change of input signals — putting of removing some
things from the distance detector di. As it is described in [53], we use inverse
control flow which is represented by attached battery. Each change of input
is simulated by reset procedure which consists in sequential implementation
of cleaning computed data clean and complete recalculation of output culc.

Sleptsov net models of employed Cubelets are shown in Figure 17. The
battery model ba is represented by spreading reverse control flow via a
sequence of places and transitions control; which enable the correspond-
ing elements action;. The reverse control flow means moving zero marking
provided by combination of regular and inhibitor arcs. Using reverse control
flow allows us firing transition in the maximal multiplicity moving all the
tokens in a single tact. Detectors di and br are represented by a single tran-
sition each moving a real value into detected value via using the correspond-
ing transition. A flashlight Cubelet attached into a line is represented by the
corresponding transition fl which divides the input energy into emitted light

COMPUTING WITH MODULAR ROBOTS 49

control-0 control-1 control-2 control-n
L e L] °
action-1 action-2 action-n
@
control-di control-br
real-di di detected-di real-br br detected-br
(b) (c)

control-fl-1 next control-fl-2

control-in-1 control-in-2 control-in-3

clean-reminder

output

light move

(d) Q]

FIGURE 17
Simulating Cubelets by Sleptsov nets: (a) battery ba, (b) distance sensor di, (c) brightness sensor
br, (d) flashlight fl, (e) inverse in.

energy represented by place light and the output energy represented by place
output. In Figure 17d we use equal proportion when of 2 input units of energy
1 is emitted as light and 1 is transmitted as output; any proportion x + y can
be applied, and extra transition clean — reminder zeroes the reminder of
division by X + y (by 2 = 1 4 1 in the figure). We interpret inverse Cubelet
in multi-valued (discretized continuous or fuzzy logic) logic sense [49, 54]
X = 255 — x as shown in Figure 17e. Thus, at first, we initialize the upper
bound in place upper by transition initUpper, then we subtract the input value
from the upper bound by transition subtract and finally we move the obtained
result by transition move into place inverse.

Let us compose a Sleptsov net model of lamp robot w = br - ba - fl
which two states are illustrated in Figure 12a and Figure 12b using distance
sensor di instead of the brightness sensor br. The model is shown in Fig-
ure 18. We attached the brightness sensor br because the Cubelets combi-
nation for spreading and sensoring light is applied further in composition of
the majority gate model shown in Figure 20. The model in Figure 18 repre-
sents a composition of the reverse control flow of battery ba and two more

50 GENARO J. MARTINEZ

control0 control1 control2 control3
° o
netx0 next1 T next2 next3
F‘L clean
eans(O—1 F—()
br input fl light

FIGURE 18
Sleptsov net model of lamp Cubelets robot represented in Figure 12b.

Cubelets for the brightness sensor br and flashlight fl connected sequen-
tially via place input. Note that since the flashlight Cubelet fl is the last
one in a line, it does not transmit energy further but consumes it entirely
to produce light of the highest brightness, the corresponding Sleptsov net
component is truncated, arc weights modified. To explain how the model
works, we represent a sequence of Figures 19a-h which contain the ini-
tial and all the intermediate markings obtained after each transition firing.
We suppose that the previous sensored value was 22 that corresponds to
the marking of place light in Figure 19a and the current sensored value is
135 that corresponds to the marking of place realBr. The transition firing
sequence o = next0 - clean - nextl - br - next2 - fl - next3 resulting in the
final marking shown in Figure 19h is obtained during computer simulation
though using the technique studied in paper [53] we can prove this fact in a
formal way. Let us illustrate peculiarity of Sleptsov net behavior compared
with Petri net: firing transition br, permitted in Figure 19d, moves all 135
tokens from place realBR to place input as shown in Figure 19e while only
one token is moved at a step by the corresponding Petri net.

Now we compose Sleptsov net model of majority gate wm ajgate Shown
in Figure 13. It consist of two parts: input wy agater and oUtPUt Wm Agateo
which are not attached to each other. The connection between two parts is
established via light emitted by three branches of the input part. The out-
put part detects the light brightness, only flashlight emitted by more than
one input branch is enough to switch the gate into true state (logical unit).
The model is represented in Figure 20. Its assembling of the cubes models
shown in Figure 17 is considered a routine job according to the technique
described when constructing model of the lamp robot shown in Figure 18.
The model shape replicates the shape of Cubelets robot in Figure 13. Three
distance sensors diA, diB, diC model the input data while the output data
is represented by flashlight lightD2. The peculiarity of the control consists

COMPUTING WITH MODULAR ROBOTS 51

FIGURE 19

Simulating Sleptsov net model of lamp Cubelets robot; the only permitted transition firing
sequence is o = next0 - clean - nextl - br - next2 - fl - next3: (a) initial state, (b) nextO fired,
(c) clean fired, (d) nextl fired, (e) br fired, (f) next2 fired, (g) fl fired, (h) next3 fired — final
marking.

in splitting the control flow by transition splitContr ol Flow into three sub-
flows for A, B, and C, respectively, and then synchronizing them by tran-
sition syncControl Flow to compute the result D. Within Cubelets robot
model (Figure 13) there is a blank cube in the center separating the input and
the output parts of the majority gates. This blank cube is represented by rather
sophisticated tangle of Sleptsov net including transition syncControl Flow
for synchronization of control flow and transitions which simulate laws of
light spreading | A1, 1 A2, IC1,1C2,1B3 and incidental arcs. We assume that
flashlights f1B1 and fIB2 influence the total brightness insignificantly and
their influence on the brightness sensor was not considered. If required, it can
be done in the same way as for flashlights of branches A and C. The speci-
fied set of arc weights produces brightness of the light D2 flashlight for input
values of distance detectors sensed onreal A, r eal B, r eal C represented with

52 GENARO J. MARTINEZ

splitControlFlow

=00

mfsz(} 1=y 2 0, ‘ \ |

lightD2 = fﬁgtectedBr \\ i realB
i \ I\ \

clean-reminderD1 lightD1

FIGURE 20

Sleptsov net model of the MAJORITY gate represented in Figure 13. Cleaning part has been
omitted for simplicity. For the chosen arc weights specifying the light spreading, the threshold
equals 78: iflight D2 > 78 then D = 1 else D = 0. Initial marking real A = 255, real B = 255
corresponds to the binary cortege A=1,B=1,C =0.

real A real B realC lightD2
0 0 0 0
0 0 255 47
0 255 0 31
0 255 255 78
255 0 0 47
255 0 255 94
255 255 0 78
255 255 255 125
TABLE 5
Table of simulated resulting brightness depending on sensed dis-
tance.

Table 5. Choosing a threshold, for instance, equal to 78, allows us to imple-
ment logical majority gates.

COMPUTING WITH MODULAR ROBOTS 53

Thus a technique of modeling Cubelets computations by Sleptsov nets
has been developed, the advantage of modeling by Sleptsov nets consists in
formal methods of the model behavior verification developed for Petri and
Sleptsov nets [50, 53].

To verify the Cubelets robots behavior, it was offered to simulate Cubelets
robots by Sleptsov nets [53]. Only models of Cubelets, involved in simula-
tion of Cubelets computing, have been constructed and principles of their
assembling have been studied on an example of modeling majority gates by
Sleptsov nets.

In the present paper, propagation of signals represented by cellular
automata Life rule B2/S2345 [34] was applied to construct logical gated
and assemble an adder. An alternative way consists in modeling maltivalue
logic operations directly using operations of continuous (fuzzy) logic [49,54]
represented by min, max, inv Cubelets.

6 SIMPLE COOPERATING ROBOTS- PERSPECTIVESAND
POSSIBILITIES

The possible future research on the robotic field like with Cubelets can be
focused also into swarm domain, i.e. the set of robots is regarded as the
swarm, solving the joined problem. As already simply demonstrated in the
paper. Over the years, science and technology have been developing strongly,
getting many outstanding achievements [16], especially in the field of artifi-
cial intelligence (Al) [24], where swarm intelligence optimization algorithm
(SA) is an integral part [14], such as particle swarm optimization [19, 39],
artificial bee colony [38, 44], and genetic algorithm [1, 41]. Along with the
general development of Al, the SA has made great leaps and bounds [37,47],
and applied in many fields of science and technology such as [10] and [15].
One of the most important and common applications is path planning for
autonomous robots on the ground, underwater and in the space.

The control of the unmanned aerial vehicles (UAVS) is often more com-
plicated, requiring not only the speed of the algorithm, but also real-time
accuracy. Many solutions have been proposed and successfully applied to
path planning for UAVs such as sampling-based path planning for UAV col-
lision avoidance [26], cooperative path planning with applications to target
tracking and obstacle avoidance for multi-UAVs [48], and grid-based cov-
erage path planning with minimum energy over irregular-shaped areas with
UAVs [11]. So contemporary research on the field of the UAVs deals also
with SA. One of the possible extension of the SA in UAVS is in its fusion
with artificial neural networks (ANN).

54 GENARO J. MARTINEZ

FIGURE 21
Each robot in the swarm contain a MLP.

6.1 Incorporate ANN and therobot

Here we propose possibility, how to join ANN with swarm robots, as already
tested on alternative swarm system control in [45]. The concept of Multi-
Layer Perceptron (MLP) neural network can bee used to enhance the swarm
robots control, communication and problem solution. More specifically, we
can adopt MLP in two cases:

1. Each of the robot in the swarm will contain an MLP,

2. A number of individuals in the population will simulate the behaviour
of the MLP to perform actions, i.e. only selected individuals will be
used as the ANN body.

6.1.1 Each robot comprise a ANN

In this implementation, each individual in the swarm had its own MLP as
shown in Figure 21.

The MLP implementation, in this case, is composed of three layers: input
layer, hidden layer and output layer. The input can be regarded as the com-
mand for the swarm, in this case has MLP network’s input layer, which con-
tains a total of 2 neurons. The hidden layer consists of 2 neurons for network
training, and an output layer consists of 1 neuron as it produces the result
of whether to perform the tasks of the swarm or not. In terms of activation

COMPUTING WITH MODULAR ROBOTS 55

_Input
signal
Output__,,
signal
_Input
signal
Input layer Hidden layer Output layer
FIGURE 22

Architecture of the MLP embedded in robot.

ANN Output

ANN Input
/

FIGURE 23
Robots in swarm simulate the ANN working mechanism.

function, there are a variety of methods which could be used for training.
Also, the topology of the network can be various and easily reconfigurable
by uploading of the new one. In the paper [45], for the purpose of binary
classification, the logistic sigmoid function is utilised. Figure 22 shows the
architecture of the MLP integrated into this prototype.

The back-propagation algorithm [40] was used to train the MLP in the
proposed approach. Back-propagation is short for “backward propagation of
errors.” It is a supervised training algorithm in the multilayer feed-forward
networks using gradient descent [23]. The dataset used for training is col-
lected from system files. After training the model, the optimized network
weights are integrated into the swarm. When the swarm executes, these
weights are used on the embedded MLP to make the computation. Then, the
MLP makes the “trigger conditions” to perform the execution, swarm enti-

56 GENARO J. MARTINEZ

ties, i.e. robots in this proposed case, are trained to perform system searches
for finding a suitable target. The ANN then generates signals for conducting a
task. Subsequently, reverse engineers analysts can hardly reverse the ANN to
work out the target specifications, that can be beneficial if the swarm perform
secret tasks.

Thus, swarm can use an ANN model, which is a black box, instead of a
traditional if-then command line to camouflage its trigger condition.

6.1.2 Robot act as a node of an ANN

This kind of implementation uses several robots in the swarm to act as input
layers, hidden layers and output layers of an MLP. Figure 23 illustrates this
idea. As shown in this figure, only some individuals in the swarm (black
coloured) act as nodes in the MLP network. More precisely, two individuals
are utilised as input nodes to receive signals, three for hidden nodes and one
for the output node.

The MLP is also trained to obtain the optimised weights in the same man-
ner as mentioned above. The difference is the weight allocated on individu-
als that act as nodes in the MLP network. In other words, each node com-
prises/carry its own weights.

When the robot executes, the swarm simulates the working mechanism
of an MLP network. More specifically, the signal values propagated from the
“inputs robot,” through the connection to the “hidden robot,” and then onward
through more connection to the “output robot.” Following this strategy, the
aim of the robot could be distributed, and it is hard to reverse engineer the
robot strategy.

7 DISCUSSION

Using modular robots Cubelets as a metaphor for swarms of very simple
agents — molecules, nanoparticles, crystals — we demonstrated how the
computing circuits can be designed, developed and executed. A binary full
adder has been also designed as an illustrious way to demonstrate a compu-
tational power of robotic ensembles.

An advantage to use Cubelets robots is that you can work with other vari-
ants.

» We can handle propagating signals using rotating Cubelets (signal value
is a spin position),

» We can handle propagating signals using speaker Cubelets (signal value
is a sound wave),

COMPUTING WITH MODULAR ROBOTS 57

» We can handle propagating signals using thermal Cubelets (signal value
is a thermal gradient).

Another contribution in the paper is that Cubelets robots have been sim-
ulated by Sletptsov nets to verify their behavior and this way we can con-
struct more complex networks to design another non-trivial robots. Also the
possibility of the next level of the robots, cooperating as the swarm, is out-
lined here. Thus cooperating agents (robots, molecules, nanoparticles, .. .)
can not only perform mathematical operations by simple interactions, but
also behave as the more complex system exhibiting kind of adaptivity and
plasticity, when the principles of the swarm intelligence and/or ANN are
used. That can rise the computational possibility of the simple cooperating
robots (Cubelets — using T-bugs'™, chipibots (hydrabots)** , kilobots, .. .) on
higher level. Further work could be focused on developing learning devices
in swarms of Cubelets and implementing image recognition and pattern clas-
sification tasks.

Some limitations and problems during these implementations were:

« If we increase the number of Cubelets on these designs hence the con-
nectivity between cubes is most difficult because some of them lost
the adequate connection. Although they could be fixed with some brick
adapters.

* We have tested some three-dimensional designs and although they are
totally viable and powerful the problem to “fly” Cubelets connected in
the three-dimensional space is that the gravity difficult hardy its connec-
tivity and stability.

REFERENCES

[1] Arantes, M.D.S., Arantes, J.D.S., Toledo, C.F.M. & Williams, B.C. (2016). A hybrid
multi-population genetic algorithm for UAV path planning. In: Proceedings of the Genetic
and Evolutionary Computation Conference 2016, 853-860.

[2] Adamatzky, A. (Ed.) (2002). Coallision-based computing. Springer, London.

[3] Adamatzky, A., Costello, B.D.L. & Asai, T. (2005). Reaction-diffusion computers. Else-
vier.

[4] Adamatzky, A. (2009). Hot ice computer, Physics Letters A 374(2) 264-271.
[5] Adamatzky, A. (2010). Game of life cellular automata. London: Springer.

[6] Adamatzky, A. (Ed.). (2016). Advances in Unconventional Computing (Vol. 22).
Springer.

1 https:/lyoutu.be/1kzht-VDUSw
* It is a work in progress in our labs. It is a new robot based Cubelets simulating the move of baby
squids and when they evolve self-assemble hydrabots.

58

[71

(8]

[9]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]
[26]

GENARO J. MARTINEZ

Adamatzky, A. (Ed.). (2016). Advances in Physarum machines: Sensing and computing
with slime mould (Vol. 21). Springer.

Adamatzky, A., Sirakoulis, G.C., Martinez, G.J., Baluska, F. & Mancuso, S. (2017). On
plant roots logical gates. BioSystems 156 40-45.

Adamatzky, A., Szaciowski, K., Konkoli, Z., Werner, L.C., Przyczyna, D. & Sirakoulis,
G.C. (2020). On buildings that compute. A proposal. In From Astrophysics to Unconven-
tional Computation, 311-335. Springer, Cham.

Bao, D.Q. & Zelinka, I. (2019). Obstacle avoidance for swarm robot based on self-
organizing migrating algorithm. Procedia Computer Science 150 425-432.

Cabreira, T.M., Ferreira, P.R., Di Franco, C. & Buttazzo, G.C. (2019). Grid-Based Cov-
erage Path Planning With Minimum Energy Over Irregular-Shaped Areas With Uavs. In:
2019 International Conference on Unmanned Aircraft Systems (ICUAS), 758-767. IEEE.

Codd, E.F. (1968). Cellular automata. Academic Press.

Dewdney, A.K. (1990). Column “Computer Recreations”: WireWorld. Scientific Ameri-
can, January.

Del Ser, J., Osaba, E., Molina, D., Yang, X.S., Salcedo-Sanz, S., Camacho, D., Das, S.,
Suganthan, P.N., Coello, C.A.C. & Herrera, F. (2019). Bio-inspired computation: Where
we stand and what’s next. Swarm and Evolutionary Computation 48 220-250.

Diep, Q.B. & Zelinka, 1. (2018). The Movement of Swarm Robots in an Unknown Com-
plex Environment. In: International Conference on Advanced Engineering Theory and
Applications, 949-959. Springer, Cham.

Evenson, R. & Ranis, G. (2019). Science and Technology: lessons for development policy.
Routledge.

Figueroa, R.Q., Zamorano, D.A., Martinez, G.J. & Adamatzky, A. (2019). A Turing
machine constructed with Cubelets robots. Journal of Robotics, Networking and Artifi-
cial Life 5(4) 265-268.

Fischer, T., Kewenig, M., Bozhko, D.A., Serga, A.A., Syvorotka, I.1., Ciubotaru, F., Adel-
mann, C., Hillebrands, B. & Chumak, A.V. (2017). Experimental prototype of a spin-wave
majority gate, American Institute of Physics 17(2) 86-91.

Ghamry, K.A., Kamel, M.A. & Zhang, Y. (2017). Multiple UAVs in forest fire fight-
ing mission using particle swarm optimization. In: 2017 International Conference on
Unmanned Aircraft Systems (ICUAS), 1404-14009. IEEE.

Griffeath, D. & Moore, C. (Eds.). (2003). New constructionsin cellular automata. Oxford
University Press.

Gregory, L.S., Orlov, A.O., Amlani, |., Bernstein, G.H., Lent, C.S., Merz, J.L. & Porod,
W. (1999). Quantum-Dot Cellular Automata: Line and Majority Logic Gate, Japanese
Journal of Applied Physics, 38, 7227-7229.

Gunji, Y.P., Nishiyama, Y. & Adamatzky, A. (2011). Robust soldier crab ball gate. In AIP
Conference Proceedings, 1389(1):995-998). American Institute of Physics.

Huang, G., Huang, G.B., Song, S. & You, K. (2015). Trends in extreme learning machines:
A review. Neural Networks, 61, 32-48.

Haenlein, M. & Kaplan, A. (2019). A brief history of artificial intelligence: On the past,
present, and future of artificial intelligence. California Management Review, 61(4), 5-14.

Hutton, T.J. (2010). Codd’s self-replicating computer. Artificial Life, 16(2):99-117.

Lin, Y. & Saripalli, S. (2017). Sampling-based path planning for UAV collision avoidance.
|EEE Transactions on Intelligent Transportation Systems, 18(11):3179-3192.

[27]

(28]

[29]
(30]
(31]

(32]

(33]

(34]

(39]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

(44]

COMPUTING WITH MODULAR ROBOTS 59

Martinez, G.J., Adamatzky, A. & Costello, B.L. (2008). On logical gates in precipitating
medium: cellular automaton model, Physics Letters A, 1(48):1-5.

Martinez, G.J., Adamatzky, A., Morita, K. & Margenstern, M. (2010). Computation with
competing patterns in Life-like automaton, In: Game of Life Automata, A. Adamatzky
(Ed.), Springer, 27, 547-572.

Martinez, G.J., Adamatzky, A. & Morita, K. (2018). Logical Gates via Gliders Collisions.
In: Reversibility and Universality, 199-220. Springer, Cham.

Mazoyer, J. (1996). Computations on one-dimensional cellular automata. Annals of Math-
ematics and Artificial Intelligence, 16(1):285-309.

Mclintosh, H.V. & Cisneros, G. (1990). The programming languages REC and Convert.
ACM SIGPLAN Notices, 25(7):81-94.

Mitchell, M., Crutchfield, J.P. & Hraber, P.T. (1994). Evolving cellular automata to per-
form computations: Mechanisms and impediments. Physica D: Nonlinear Phenomena,
75(1-3):361-391.

Minsky, M.L. (1967). Computation: Finite and Infinite Machines. Englewood Cliffs:
Prentice-Hall.

Martinez, G.J., Morita, K., Adamatzky, A. & Margenstern, M. (2010). Majority adder
implementation by competing patterns in Life-like rule B2/S2345, Lecture Notesin Com-
puter Science, 6079:93-104.

Martinez, G.J. & Morita, K. (2018). Conservative Computing in a One-dimensional Cel-
lular Automaton with Memory. Journal of Cellular Automata, 13(4):325-346.

Morita, K. (2001). A simple universal logic element and cellular automata for reversible
computing. In: International Conference on Machines, Computations, and Universality,
102-113. Springer, Berlin, Heidelberg.

Mavrovouniotis, M., Li, C. & Yang, S. (2017). A survey of swarm intelligence for
dynamic optimization: Algorithms and applications. Swvarm and Evolutionary Compu-
tation, 33, 1-17.

Pan, T.S., Dao, T.K. & Pan, J.S. (2017). An unmanned aerial vehicle optimal route plan-
ning based on compact artificial bee colony. In: Advancesin Intelligent Information Hid-
ing and Multimedia Sgnal Processing, 361-369. Springer, Cham.

Phung, M.D., Quach, C.H., Dinh, T.H. & Ha, Q. (2017). Enhanced discrete particle swarm
optimization path planning for UAV vision-based surface inspection. Automation in Con-
struction, 81, 25-33.

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088):533-536.

Roberge, V., Tarbouchi, M. & Labonté, G. (2018). Fast genetic algorithm path planner
for fixed-wing military UAV using GPU. |EEE Transactions on Aerospace and Electronic
Systems, 54(5):2105-2117.

Schweikardt, E. & Gross, M.D. (2008). Learning about complexity with modular robots.
In: 2008 Second |EEE International Conference on Digital Game and Intelligent Toy
Enhanced Learning, 116-123. IEEE.

Schweikardt, E. (2011). Modular robotics studio. In: Proceedings of the fifth international
conference on Tangible, embedded, and embodied interaction, 353-356. ACM.

Tian, G., Zhang, L., Bai, X. & Wang, B. (2018). Real-time Dynamic Track Planning of
Multi-UAV Formation Based on Improved Atrtificial Bee Colony Algorithm. In: 2018 37th
Chinese Control Conference (CCC), 10055-10060. IEEE.

60

[45]

[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]

[54]

[55]

GENARO J. MARTINEZ

Truong, T.C., Zelinka, I. & Senkerik, R. (2019). Neural Swarm Virus. In: Svarm, Evolu-
tionary, and Memetic Computing and Fuzzy and Neural Computing, 122-134. Springer,
Cham.

von Neumann, J. (1966). Theory of Self-reproducing Automata (edited and completed by
A.W. Burks), University of Illinois Press, Urbana and London.

Wanka, R. (2019). Swarm intelligence. it-Information Technology, 61(4):157-158.

Yao, P., Wang, H. & Su, Z. (2016). Cooperative path planning with applications to target
tracking and obstacle avoidance for multi-UAVs. Aerospace science and Technology, 54,
10-22.

Zaitsev, D.A., Sarbei, V.G. & Sleptsov, A.l. (1998). Synthesis of continuous-valued logic
functions defined in tabular form. Cybernetics and Systems Analysis, 34(2):190-195.
Zaitsev, D.A. (2013). Verification of Computing Grids with Special Edge Conditions by
Infinite Petri Nets. Automatic Control and Computer Sciences, 47(7):403-412.

Zaitsev, D.A. (2015). Universality in Infinite Petri Nets. Lecture Notes in Computer Sci-
ence, 9288, 180-197.

Zaitsev, D.A. (2017). A generalized neighborhood for cellular automata. Theoretical
Computer Science, 666, 21-35.

Zaitsev, D.A. (2017). Universal Sleptsov Net. International Journal of Computer Mathe-
matics, 94(12):2396-2408.

Zaitsev D.A. (2017). A Toolbox for Fuzzy Logic Functions Synthesis on a Choice Table.
In: Eurosis: 15th Industrial Smulation Conference Polish Academy of Science, Warsaw,
11-16.

Zaitsev, D.A. (2018). Simulating Cellular Automata by Infinite Petri Nets. Journal of
Cellular Automata, 13(1-2):121-144.

	Introduction
	Modular robots Cubelets
	Computing with propagating patterns
	Cubelets computing
	Propagating signals with Cubelets
	Constructing circuits with Cubelets

	Computations on Cubelets by Sleptsov nets
	Simple cooperating robots - perspectives and possibilities
	Incorporate ANN and the robot
	Each robot comprise a ANN
	Robot act as a node of an ANN

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Aldhabi
 /Algerian
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /ARBERKLEY
 /ARBLANCA
 /ARBONNIE
 /ARCARTER
 /ARCENA
 /ARCHRISTY
 /ARDARLING
 /ARDECODE
 /ARDELANEY
 /ARDESTINE
 /ARESSENCE
 /ARHERMANN
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ARJULIAN
 /Bahnschrift
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Calibri-Light
 /Calibri-LightItalic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Candara-Light
 /Candara-LightItalic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /ComicSansMS-BoldItalic
 /ComicSansMS-Italic
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CorbelLight
 /CorbelLight-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Gadugi
 /Gadugi-Bold
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoloLensMDL2Assets
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /InkFree
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /JavaneseText
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /LeelawadeeBold
 /Leelawadee-Bold
 /LeelawadeeUI
 /LeelawadeeUI-Bold
 /LeelawadeeUI-Semilight
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /MalgunGothic-Semilight
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiLight
 /MicrosoftJhengHeiRegular
 /MicrosoftJhengHeiUIBold
 /MicrosoftJhengHeiUILight
 /MicrosoftJhengHeiUIRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftUighur-Bold
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /MicrosoftYaHeiLight
 /MicrosoftYaHeiUI
 /MicrosoftYaHeiUI-Bold
 /MicrosoftYaHeiUILight
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyanmarText
 /MyanmarText-Bold
 /Narkisim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NirmalaUI
 /NirmalaUI-Bold
 /NirmalaUI-Semilight
 /NSimSun
 /Nyala-Regular
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /Raavi-Bold
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /SakkalMajalla
 /SakkalMajallaBold
 /ScriptMTBold
 /SegoeMDL2Assets
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUIBlack
 /SegoeUIBlack-Italic
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUIEmoji
 /SegoeUIHistoric
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-LightItalic
 /SegoeUI-Semibold
 /SegoeUI-SemiboldItalic
 /SegoeUI-Semilight
 /SegoeUI-SemilightItalic
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SitkaBanner
 /SitkaBanner-Bold
 /SitkaBanner-BoldItalic
 /SitkaBanner-Italic
 /SitkaDisplay
 /SitkaDisplay-Bold
 /SitkaDisplay-BoldItalic
 /SitkaDisplay-Italic
 /SitkaHeading
 /SitkaHeading-Bold
 /SitkaHeading-BoldItalic
 /SitkaHeading-Italic
 /SitkaSmall
 /SitkaSmall-Bold
 /SitkaSmall-BoldItalic
 /SitkaSmall-Italic
 /SitkaSubheading
 /SitkaSubheading-Bold
 /SitkaSubheading-BoldItalic
 /SitkaSubheading-Italic
 /SitkaText
 /SitkaText-Bold
 /SitkaText-BoldItalic
 /SitkaText-Italic
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Time-Roman
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UrduTypesetting
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YuGothic-Bold
 /YuGothic-Light
 /YuGothic-Medium
 /YuGothic-Regular
 /YuGothicUI-Bold
 /YuGothicUI-Light
 /YuGothicUI-Regular
 /YuGothicUI-Semibold
 /YuGothicUI-Semilight
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [432.000 648.000]
>> setpagedevice

