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ABSTRACT

De Bruijn diagrams have been used as a useful tool for the
systematic analysis of one-dimensional cellular automata
(CA). They can be used to calculate particular kind of con-
figurations, ancestors, complex patterns, cycles, Garden of
Eden configurations and formal languages. However, there
is few progress in two dimensions because its complexity
increases exponentially. In this paper, we will offer a way
to explore systematically such patterns by de Bruijn dia-
grams from initial configurations. Such analysis is concen-
trated mainly in two evolution rules: the famous Game of
Life (complex CA) and the Diffusion Rule (chaotic CA ). We
will display some preliminary results and benefits to use de
Bruijn diagrams in these CA.

KEYWORDS: de Bruijn diagrams, cellular automata,
complexity, chaos, Life rule, Diffusion rule.

I. INTRODUCTION

Complex dynamics in CA are studied from several per-
spectives and yielding some interesting results for many
years, some of them are: basins of attraction, mean field
theory, differential equations, genetic algorithms, cellular

complex networks, complexity computation, formal lan-
guages, graph theory and so on.

In this way, so calledde Bruijn diagramsare a special
kind of directed graphs, known originally asshift register
sequences. These diagrams arise due to a series of works
focused to study shift register sequences of symbols for the
encoding of information; where paths represent sequences
of states [3].

The de Bruijn diagrams already had been applied in CA
(mainly in one dimension case), previously by McIntosh
[9], Wolfram [18], Jen [6], Voorhees [15], Sutner [14],
among other researchers.

In this paper, we will give an introduction selecting de
Bruijn diagrams in two-dimensional CA. We consider two
special cases of study: the famousGame of Life(complex
behaviour) [2] and theDiffusion Rule(chaotic behaviour)
[8]. We think that is possible to obtain a practical represen-
tation of complex patterns by de Bruijn diagram sequences,
mainly for the smallest and compact mobile self localiza-
tions in both CA.

II. ANTECEDENTS

For several years global and local behaviour in CA have
been studied from several point of views. In this work we
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will concentrate our attention on the de Bruijn diagrams.

De Bruijn diagrams are a powerful tool to calculate ances-
tors, Garden of Eden configurations, regular language, set
properties, topological properties, and some fragments of
complexity in CA. In this way, mainly McIntosh [10] and
Voorhees [15] have developed a wide of research reported
for several years.

In this direction, we will mention two previous relevant
applications of de Bruijn diagrams in two-dimensional
CA. First, McIntosh in 1988 wrote the first approximation
to construct the de Bruijn diagrams in two-dimensional
CA, in two papers:Life’s Still Lifes [11] and A Zoo of
Life Forms [12]. By the way, Eppstein has had selected
between others, the de Bruijn diagrams algorithms to find
new complex patterns in Life [1].

Therefore, following McIntosh’ s representation, in this pa-
per we will concentrate our attention in small and compact
complex patterns in Life and Diffusion rule from its respec-
tive de Bruijn diagrams.

III. DE BRUIJN DIAGRAMS

De Bruijn graph is a directed graph withsn nodes, which
represent length sequencesn of s symbols, where at least
one overlapping symbol exists.

Thus, applied to cellular automata theory:

• The symbols represent the states, each state value will
be represented byv.

• The nodes of such graphs are partial neighbourhoods
formed by the half of a neighbourhood.

• The evaluated cell int+ 1 will be calledcenter cell.

For one dimensional neighbourhood the nodes are strings
of symbols but for two dimensions it is not possible, there-
for the partial neighbourhoods are defined by their charac-
teristics:

• Form: This depends of the original neighbourhood,
where one half of the neighbourhood must overlap at
least on cell with another half.

• Cell number: It’s the n number of cells that the par-
tial neighbourhood contains. Each of this cells are la-
beled, they have one position in the partial neighbour-
hood and they have a state value.

• Overlap condition: The relationship between nodes is
given through overlapping cells to form a full neigh-
bourhood. This cells must have the same state value
and the center cell must be inside this group of cells.

Figure 1. Moore partial neighbourhood

• State value in cell center att + 1: The state value in
cell centervce is the result of the evolution rule of the
CA in study, and labels the edge.

For example, Fig. 1 shows how the Moore neighbourhood
is divided in two parts as a rectangle with six cells; the
overlapping cells areb, d, f in the fist node, anda, c, e in
the second node, and the cell center is the celld in the first
node; wheres = 2 andn = 6 and consequently there are
26 nodes.

However, this is the basic case, to know the behaviour of
a cell set, there are some considerations such as ensuring
that all the necessary cells to evaluate the set are in the
neighbourhood, formed by the relation between nodes, and
this relation grows exponentially.

Figure 2(a) displays a partial neighbourhood evaluating
nine cells, these are the center cell and the eight neighbours.
Thus, the partial neighbourhood has 15 cells, and overlaps
with 10 cells, the nodes number are215. Figure 2(b) shows
the partial neighbourhoods evaluating 25 cells, overlapping
cells in this case are 21 and nodes are225. However, over-
lapping cells affect directly the number of final relations
between nodes, that way the search relation possibilities
get smaller.

IV. DE BRUIJN DIAGRAMS IN 2D CA

There are a variety of methods to build de Bruijn diagrams,
with advantages and disadvantages in computational
complexity. In this section, we will describe a method
based on paths of lengthl, in addition to show the possible
results obtained.

Typically, we have two basic kinds of neighbourhoods in
2D CA literature: von NeumannandMoore. Since each
one has specific features and properties its treatment will
be different and reflected in all nodes. Algorithm 1 shows
the number of steps to build de Bruijn diagrams in 2D
CA. However, this section shall describe an example with
Mooreneighbourhood, only.

All the features that must be considered to build de Bruijin
diagrams will be described step by step.
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(a)

(b)

Figure 2. Examples of partial neighbourhoods for a cell
set to evaluate.

Algorithm 1 Building de Bruijn Diagrams for 2D C.A.
Compute all the elements or nodes of diagram.
Look for all the relations between all the elements ac-
cording theoverlapping condition
Evaluate all the resulting configuration with the cellular
automata rule that will be analyzed.
Filter the results in accordance the cellular automata be-
haviour.
Look for paths of lengthl into the de Bruijn diagram.
In order to build the second dimension, the paths of the
last step will now be the nodes and the steps 2, 3, 4 and
5 will be repeated.

A. Computing nodes

As discussed in section 3, the number of elements of the
de Bruijn diagrams depend of the state number of cellular
automata and the cell number into the sub neighbourhood.

This paper will show the analysis with cellular automata
rules of two states and Moore neighbourhood. Giving
values to the variabless = 2, n = 6, nodes26 = 64, the
overlap condition is showed by figure 1, where black cells
are overlapped.

Each node represents a possible combination of state values
that the sub neighbourhoodcan have. Here, in order to label
each sub neighbourhood, its binary representation will be
used and the sequences will be built from right to left and
from bottom to top, so that:

Figure 3. Example of overlap

• 1 will be when cellf is black.

• 32 when cella is black

• zero if all the cells are white.

• 63 when all cells are black.

B. Working relations

A complete neighbourhood is created through overlapping
two sub neighbourhoods using this condition:b = a,
d = c, f = e, whereb, d, f are cells in node 1, anda, c, e
are cells in node 2. The central cell must be within the set
of overlapped cells.

Figure 3 shows one example about the overlapping between
two sub neighbourhood types figure 1.

C. Evaluating configurations

Once we have all the relationships between the sub neigh-
bourhoods, it is necessary to know the state value of each
evaluated cell att+1; this depends on the cellular automata
rule. The resulting string will be the size and shape of the
region of the original evaluated cell set. That is, if it is only
one evaluated cell, the resulting string will have only one
state value, if it is a region ofn × m evaluated cells, the
resulting string will be alson × m, not modifying the po-
sition in space that each cell has as result of the evaluation,
where each cell is the centerpiece of a neighbourhood.

D. Filtering results

A way to perform the analysis of cellular automata is
through their behaviour. In the literature of the cellular
automata, there are two behaviours that are analyzed: the
permanent and shifting: due to these features, it is possible
to find patterns such as,still lifes, andgliders.

Although this step is not necessary, in order to find some
patterns into the rule (one of de Bruijn diagram goal) it is
recommended to perform the filters. There are two kinds
of filters: the permanenceandshifting.
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Figure 4. Example

The permanence filteris when the evaluating cells have
the same state value that the resulting evaluated cells.

Theshifting filter is when one neighbour has the same state
of the evaluating cell. So, there are three kinds of filters in
the Moore neighbourhood:

• Bottom to top: taking the first node, is when the eval-
uated cell has de same value that the cellf .

• Left to right: taking the first node, is when the evalu-
ated cell has de same value that the cellc.

• Diagonal: taking the first node, is when the evaluated
cell has de same value that the celle.

E. Paths in de Bruijn diagrams

In order to build an evolution space whose state at time
t + 1 is known, we have to look for all the possible
relationships between nodes.

This query can be carried out by methods of searching
paths graphs, such as Euler and Hamiltonian paths, where
cycles have sizee, with the purpose of having an order
among all possible configurations.

The previous query, when done exhaustingly in combi-
nation with the filters of the previous step, can lead us to
know all the patterns in the rule with a sizee.

Figure 4 shows the result of performing the steps described
above, where a permanence filter with Diffusion Rule was
done.

V. Life-Like patterns via de Bruijn diagrams

Life like rules are a good example of the application of
de Bruijn diagrams in two dimensional cellular automata,
where the Moore neighbourhood is used.

In order to show the results given by de Bruijn diagrams,
this section shows some specific examples with the Game
of Life and Diffusion rules.

Figure 5. Typical evolution in Life from a random initial
condition, some complex patterns emerge, such as:

gliders, oscillators, and still life configurations.

A. The Game of Life

The complex behaviour in theGame of Life(B3/S23 or
Life) has been studied since the 70’s. In order to make
universal computation with Life, interesting patters have
been used. These patters emerge as resulting of evaluating
cells.

To play the Life’s game, we will consider the next rules:

• One dead cell will live if it has 3 cells alive in its
neighbourhood.

• If one cell is alive it will remain alive if it has 2 or 3
living cells in its neighbourhood.

• If one cell is alive it will die if has less than 2 or more
than 3 living cells in its neighbourhood.

A way to find patterns in the cellular automata behaviour
is using de Bruijn diagrams. Figure 6 and 7 show a part of
the complete diagram; it shows the relation between nodes
and the state value after one evaluation.

Figure 6 usespermanence filterso that the center cells will
remain with the original state value. In this case the string
7-26-33-7 (top of figure 6) shows that the resulting string
will be 100 after evaluating all the neigbourhoods.

Figure 7 usesshifting filter in diagonal, so that string 18-
33-7-10-1-18 will give as a result the string10110. In this
way, the de Bruijn diagrams could be used to build strings
with lengthl.
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Figure 6. De Bruijn diagram in Life with permanence filter

B. Diffusion Rule

Another interesting rule is known asDiffusion Rule
(B2/S7). Such CA presents typically a chaotic evolution
(see Fig. 8), but also a complex behaviour from very
low initial densities. Starting with very low densities
in state 1. Typically any random initial condition shall
yield different complex patterns as gliders or oscillators[8].

TheDiffusion ruleis defined as follows:

• One cell in state 0 will be in state 1, if it has exactly
two neighbours in state 1. If not the state remains 0.

• One cell in state 1 will remain in state 1 if it has ex-
actly seven neighbours in state 1. If not it will change
to state 0.

In Fig. 9 Diffusion was made using permanence filter show-
ing strings with length 4 and 5; button of each configura-
tion is shown the result of the evaluation, they have length
3 and 4. Also, Fig. 10 usesshifting filter in diagonal and
shows the strings that are built with length 4, 5, 6 and be-
low of each configurations is showed the evaluated cells

0

0

Figure 7. De Bruijn diagram in Life with shifting filter in
diagonal.

with length 3, 4 and 5. Consequently, concatenations of
these patterns are useful to inspect the behaviour of peri-
odic structures. Indeed, sometimes they form new complex
patterns.

VI. FINAL NOTES

This paper gives a brief introduction about the de Bruijn
diagrams in 2D CA Life-like rules. This way, Moore
neighbourhood which display a symmetry, such that
is convenient to create spaces for evaluation of cells.
Diagrams grown quickly but following some simple
filters hence we can avoid some complicated calculus and
concentrate our attention on fragments of these diagrams
that are useful, the cycles.

Cycles in the de Bruijn diagrams represent precisely a
kind of formal language, derived from the evolution rule.
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Figure 8. Typical evolution in Diffusion rule from a
random initial condition, dominated for chaos.

In this case, also such strings will help us to find small
complex patterns emerging in Life and Diffusion Rule. Of
course, Life has the most bigger research in this direction
with other tools, here only we want to test and compare
our results, and yield partial new results for the Diffusion
Rule. Our goal is classify systematically these patterns
and construct most bigger and complex configurations.
Of course, to generate such patterns we need increase
the number of shifts and generations that is the future work.

As an initial result we have discovered a new puffer train
configuration in Diffusion Rule following the first cycle in
figure 9.
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