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Universal register machine, a formal model of computation, can be
emulated on the array of the Game of Life, a two-dimensional cellular
automaton. We perform spectral analysis on the computation dynamical
process of the universal register machine on the Game of Life. The array
is divided into small sectors and the power spectrum is calculated from
the evolution in each sector. The power spectrum can be classified into
four categories by its shape; null, white noise, sharp peaks, and power
law. By representing the shape of power spectrum by a mark, we can
visualize the activity of the sector during the computation process. For
example, the track of pulse moving between components of the univer-
sal register machine and the position of frequently modified registers
can be identified. This method can expose the functional difference in
each region of computing machine.

Keywords: Universal register machine, computation process, game of Life, func-
tional imaging, spectral analysis

1 INTRODUCTION

A wide variety of formal models of computation capable of supporting
effective computability have been proposed in the theory of computation.
Although all these models are computationally equivalent in the sense that
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they can emulate each other, there is much difference among them. The most
noticeable difference is the ‘concreteness’ of the model. While partial recur-
sive function is a set of functions and there is no notion of space and time in
its definition, Turing machine (TM) is concrete enough to make as an actual
machine. In analyzing the computation process of a model that works in space
and time, we can make use of several kinds of information accompanied with
computation process. For example, side-channel attack is one of cryptanal-
ysis to break the cryptographic security by exploiting physical signals such
as power consumption [1] or electromagnetic radiation [2] of cryptographic
module.
The innovation in visualization technology have highly promoted science

in history, e.g. microscope in biology or telescope in astronomy. Nowadays
neuroscience has achieved considerable progress by means of functional neu-
roimaging such as PET (positron emission tomography) or fMRI (functional
magnetic resonance imaging). These visualization technologies can visualize
the local activity of living brain by measuring blood flow or metabolic pro-
cesses associated with neuronal activity. Visualization of computation pro-
cess might provide a novel insight into the nature of computation.
In this research we deal with cellular automata (CA) as a model of com-

putation because it is easier to acquire and analyze the data on computing
processes. We particularly employ universal register machine (URM) [3] con-
structed in the array of the Game of Life (LIFE) [4].
In one-dimensional CAs, space-time pattern [5] is widely used to dis-

play the temporal behaviour of CA and furthermore several filtering meth-
ods [6–10] have been developed to extract essential structures from space-
time pattern. In two-dimensional CAs, three-dimensional display has been
used [11].
In this paper we try to display the functional difference instead of showing

bare state of cell in two-dimensional CAs. The pattern of the URM on the
array of LIFE is stationary as a whole but it fluctuates in minute scales. So
the fluctuation in an area indicates the activity of the area. We use power
spectrum as a measure of activity of the area because it is integrated from the
fluctuation.
This paper is organized as follows. We explain the URM constructed on

the array of LIFE in section 2. The visualization method based on spectral
analysis is given in section 3. We discuss the meaning of the results and the
futures plans in section 4.

2 MODEL OF COMPUTATION

In this section, we explain the mechanism of the URM and its implementation
on the array of LIFE.
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mnemonic Operand 1 Operand 2 Operand 3

INC n PassAdr
DEC n PassAdr FailAdr
HALT

TABLE 1
Instruction set of the register machine.

address mnemonic Operand1 Operand2 Operand3

0 DEC 1 1 2
1 INC 0 0
2 HALT

TABLE 2
Sample program of the register machine.

2.1 Universal Register Machine
Register machine [12, 13] is a formal model of computation with a finite (or
infinite) set of registers. We number them consecutively from zero. Each reg-
ister can hold an indefinitely large non-negative integer. The register machine
employed in this article is supposed to have an instruction set listed in Table
1.
The INC instruction increments the content of register n and jumps to

address PassAdr. The DEC instruction decrements from the content of regis-
ter n if it is greater than 0 and jumps to address PassAdr, otherwise it does
nothing but jump to address FailAdr. The HALT instruction halts the pro-
gram. For example, the program listed in Table 2 adds the content of register
1 to register 0 and resets register 1.
Register machine performs a fixed task according to a prestored program,

whereas URM can emulate the behavior of any register machine. Let M be
a register machine and U be a URM. By encoding both the program and
the contents of the registers of M into the registers of U , U can emulate the
behavior of M .
The URM adopted in this article has 12 registers. Let ri (i = 0, 1, 2, · · ·)

denote the content of register i of M and Rj (j = 0, 1, · · ·, 11) the content
of register j of U . We encode the values ri into R0 by Gödel numbering as
follows;

R0 = P(1)r0 × P(2)r1 × · · · , (1)

where P(n) denotes the n the prime number (P(1)=2, P(2)=3, · · ·). Given r0
= r1 = 1 and ri = 0 (i > 1), we have R0 = 21 × 31 = 6.
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We encode a series of operators of the program of M into R1 by assigning
zero for HALT, one for INC, and two for DEC. Let Ii ∈ {0, 1, 2} be a number
corresponding to the operator of the program of M in address i (i = 0, 1, 2,
· · ·). We set R1 as follows;

R1 = P(1)I0 × P(2)I1 × · · · . (2)

As for the program listed in Table 2, we have R1 = 22 × 31 × 50 = 12.
We encode a series of the first operands of the program of M into R2. Let

qi (i = 0, 1, 2, · · ·) denote the first operand of the program of M in address i .
If there is no operand in an instruction such as HALT, qi is equal to zero. We
set R2 as follows;

R2 = P(1)P(q0+1)−2 × P(2)P(q1+1)−2 × · · · . (3)

We have q0 = 1, qi = 0 (i > 0) in the program in Table 2, so (3) gives R2 =
2P(2)−2 × 3P(1)−2 × 5P(1)−2 = 2.
As for the second and third operand, we encode them into R3 and R4 in

the same way as (3). So we have R3 = 2, R4 = 2P(3)−2 × 3P(1)−2 × 5P(1)−2 =
8 for the program in Table 2. We unconditionally set R5 = P(1) = 2 and R6 =
R7 = · · · = R11 = 0.

2.2 Implementation
LIFE is a two-dimensional CA that has computational universality. Let
sx,y(t) ∈ {0, 1} be the state of the cell (x, y) at time step t and nx,y(t) denote
the number of state one cells among surrounding eight cells of the cell (x, y)
at time step t . The evolution of each cell is governed by the transition rule,

sx,y(t + 1) = F(sx,y(t), nx,y(t)), (4)

where F is a transition function defined by

F(0, 3) = F(1, 2) = F(1, 3) = 1,
otherwise F = 0. (5)

Figure 1 shows the initial configuration of LIFE that can emulate the above-
mentioned URM. The gray and black square represents the cell with state
zero and one respectively. The pattern of the URM spans about 19,000 cells
in height and 3,900 cells in width and it takes about 32,586,000 time steps to
halt. The URM we deal with in this article emulates the register machine that
performs the program described in Table 2 with r0 = r1 = 1 and ri = 0 (i > 1).
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register tablelatch header

latch footer

FIGURE 1
Initial configuration to emulate the URM on LIFE. The upper (lower) half of the configuration is
on the left (right). The gray and black squares are the cells with state zero and one. The rectangle
drawn in a solid line represents the area in which power spectra are calculated.

The transition of each register of the URM is shown in Table 3 in which t
denotes the generation of LIFE emulating the URM.
Taking a broad view of the URM on LIFE, it is composed of five parts. At

the top row from left to right, there exist latch header and register table. The
latch header turns a pulse coming from a register in a downward direction and
the register table contains 12 registers. In the middle row from left to right,
there are table area and operation table. The most part of the configuration is
occupied by these two area. The table area consists of six kinds of tables and
the operation table is studded with operation merges. At the bottom row there
is latch footer that terminates a pulse coming through the table area. The
signal transmission between these components is conveyed by pulse called
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t 0 1 2 3 4 5 6 7 8 9 10 11

0 6 12 2 2 8 2 0 0 0 0 0 0
5,300 6 11 2 2 8 2 0 0 0 0 0 0
20,154 6 11 2 2 8 2 0 1 0 0 0 0
20,700 6 10 2 2 8 2 0 1 0 0 0 0
22,909 6 10 2 2 8 2 0 1 0 0 1 0
35,967 6 10 2 2 8 2 0 2 0 0 1 0
36,500 6 9 2 2 8 2 0 2 0 0 1 0
38,719 6 9 2 2 8 2 0 2 0 0 2 0
51,804 6 9 2 2 8 2 0 3 0 0 2 0
52,373 6 8 2 2 8 2 0 3 0 0 2 0
54,562 6 8 2 2 8 2 0 3 0 0 3 0
: : : : : : : : : : : : :

32,586,211 4 12 2 2 8 5 0 0 0 0 0 0

TABLE 3
Transition of the contents of register 0∼11 of the URM emulating the program
in Table 2. t denotes the generation in the LIFE on which the URM runs.

light weight space ship (LWSS) and its evolution is shown in Figure 2. A
pulse repeatedly circulates through table area, operation table, register table,
and latch header and finally vanishes at latch footer.
Next let us show you the computation process of the URM in detail. The

computation process starts when a pulse called execution pulse goes right-
ward from the top of table area to operation table that turns the pulse in a
upward direction and the pulse reaches one of the registers.
Figure 3 shows the snapshot of a register and its enlarged view of the

area surrounded by a solid line. The content of the register is held as the
length of a bidirectional arrow in the right of Figure 3. Register has two input
gates labelled ‘INC’ and ‘DEC’ at the bottom of Figure 3. If a pulse enters

t t+1 t+2 t+3 t+4
FIGURE 2
Evolution of a Light Weight Space Ship (LWSS). The white and black square represents the cell
with state zero and one respectively.
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DECINC

Z

NZ

FIGURE 3
Left: Snapshot of a single register. Right: Enlarged view of the area surrounded by a solid line.

INC (DEC) gate, INC (DEC) instruction is carried out on the register. If the
content of the register becomes zero as a result of execution of the instruction,
Z pulse is emitted from Z gate otherwise NZ pulse is emitted from NZ gate.
Z pulse and NZ pulse leave for latch header.
Latch header has two input gates labelled ‘Z’ and ‘NZ’ and four output

gates labelled ‘A’, ‘B’, ‘C’, and ‘D’ as shown in the left of Figure 4. If an NZ
pulse enters the NZ gate, a latch clear pulse is emitted from output gate A
and a latch read pulse from output gate B. Similarly if a Z pulse enters the Z
gate, a latch clear pulse is emitted from output gate C and a latch read pulse
from output gate D.
The areas surrounded by dotted line below the latch header are latches.

The latch has three input gates called “latch read”, “latch clear”, and “latch
set” and has three output gates “latch read”, “latch clear”, and “execution”.
Two of the outputs, “latch read” and “latch clear” are the duplication of each
inputs. The latches located in the left column are called Z latches and NZ
latches in the right.
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latch heder

Z
NZ

Z latch

NZ latch

block

A B CD

latch clearlatch read

EXE

latch
set

FIGURE 4
Left: Pattern of latch header and Z and NZ latches. Upper right: Enlarged view of the left part of
latch surrounded by a solid line. Lower right: Enlarged view of the right part of latch surrounded
by solid line.

The upper right of Figure 4 shows an enlarged view of the upper left part of
a Z latch. Latch read pulse and latch clear pulse enter the Z latch from above
following the arrows with respective labels. The lower right of Figure 4 is
an enlarged view of the lower right part of an NZ latch. If there is a pattern
pointed out with a label ‘block’, the latch is being set, otherwise it is being
clear.
The latch is initially being the clear state. If a latch set pulse, that is men-

tioned below, enters a latch from the right following the arrows with label
‘latch set’, the latch becomes the set state. If a latch set pulse enter the latch
being the set state, it becomes the clear state.
When a latch clear pulse passes downward through a latch, the latch

becomes the clear state if it is being set, otherwise the latch keeps being
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branch
split

loopback
split

loopback
merge

branch-end
merge

FIGURE 5
Some structures in the table area.

clear. When a latch read pulse passes downward through a latch, the latch
becomes the clear state if it is being set and an execution pulse is emitted
along the arrow labelled ‘EXE’ in the lower right of Figure 4. The latch read
pulse does not change the latch being clear. Latch clear pulse and latch read
pulse are terminated in colliding with latch footer. In this computation pro-
cess, latch read pulse is terminated at about t = 32, 586, 000 and the whole
pattern ends up in periodic behavior.
Table area is composed of latch table, loopback pulse eater table, branch

table, loopback table, and NOP/HALT eater table starting from the left. Fig-
ure 5 shows several structures located in the table area.
While execution pulse emitted from a Z/NZ latch passes through the table

area, latch set pulse is emitted from the table area and proceeds to Z/NZ
latch. When the execution pulse passes through a loopback split, a loopback
pulse is emitted downward. The loopback pulse turns west at a loopback
merge. When the loopback pulse passes through a branch split, a branch
pulse is emitted upward or downward. The loopback pulse keeps going west
and vanishes in a collision with loopback pulse eater, which is not displayed
in Figure 5. The branch pulse turns west when it collides with branch-end
merge and becomes a latch set pulse.

3 VISUALIZATION METHOD

The URM constructed on LIFE can perform computation utilizing various
patterns observed in LIFE. They are classified in three categories; stationary,
periodic and propagating patterns. All these patterns are located properly for
close cooperation with others. Some areas vary frequently and others do not.
That implies that there is a regional difference in behaviour. So, we employ
spectral analysis to study the regional difference of behavior of the URM on
LIFE.
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3.1 Spectral Analysis
We perform spectral analysis of the computation process of URM on LIFE
to detect the regional activity of the array. The discrete Fourier transform of
a time series of states sx,y(t) for t = 0, 1, · · · , T − 1 is given by

ŝx,y( f ) = 1
T

T−1∑

t=0
sx,y(t)exp(−i

2π t f
T

). (6)

We define the power as

S( f ) = 1
N

∑

x,y

|ŝx,y( f )|2, (7)

where the summation is taken in N cells in consideration. In this research,
we divide the area into squares with 50× 50 cells, so the summation is taken
in a 2,500 cells. The period of the component at a frequency f in a power
spectrum is given by T/ f .
It is known that the complicated behavior such as frequent modification

in a cell of tape of TM accompanies power law in power spectrum [14]. This
result implies that the power law in power spectrum can be an indicator of
actively changing area. We, therefore, estimate the exponent β at low fre-
quencies from the least square fitting of power spectrum by

ln S ≈ α + β ln f, (8)

If a power spectrum possesses power law, the degree of the deviation from
power law can be an important measure. So, we calculate the residual sum of
squares σ 2 defined by

σ 2 = 1
fb

fu∑

f=1
(ln S − α − β ln f )2. (9)

In this research we set T=65,536 and fu = 100 and calculate the power
spectra on the area with 8, 000× 3, 800 = 30,400,000 cells surrounded by
a solid line in Figure 1. We divide the area into 160 × 76 = 12,160 sectors
to investigate the regional difference of power spectra. Each sector consists
of 50× 50 cells. We consider only the power spectrum with β ≤ −0.2 and
σ 2 ≤ 1.5 as power law.



VISUALIZATION OF THE COMPUTATION PROCESS OF A URM 369

3.2 Results
Most of the sectors exhibit trivial power spectrum in which all components
are zero. Let us call this kind of power spectrum ‘null’ in this article. The null
power spectrum is observed in 9,523 out of 12,160 sectors. Another trivial
type of power spectrum has only DC ( f = 0) component and this type is
observed in 60 out of 12,160 sectors. Both null and dc-only power spectra
are observed in sectors in which there is no change during the observation
time steps. Null power spectra are observed in sectors in which all cells are
in state zero and the sectors with dc-only power spectrum includes stationary
patterns.
Other sectors exhibit distinctive power spectra according to its behaviour.

Typical nontrivial examples of power spectra are shown in Figure 6 (A), (B)
and (C) and their corresponding positions of sectors are indicated by white
squares in Figure 7.
The power spectrum in Figure 6 (A) exhibits white noise. This kind of

power spectrum is observed in 688 out of 12,160 sectors. Since the sectors
that exhibit white noise coincide with a pathway of pulse, we can guess the
white noise is caused by the rarely occurred passing of pulses.
The power spectrum in Figure 6 (B) has several peaks. The sectors in

which this type of power spectrum is observed are located on an oscilla-
tor called “glider gun” that can periodically emit propagating pattern called
‘glider’. The right of Figure 8 shows a snapshot of glider gun with period 30
and this oscillator causes the fundamental frequency with f = 2, 185 in the
power spectrum in Figure 6 (B). Another frequently observed glider gun has
period 60 and its snapshot is shown in the left of Figure 8 and it causes the
peak at f = 1, 092 in other power spectra. This kind of power spectrum is
observed in 1,885 out of 12,160 sectors.
The power spectrum in Figure 6 (C) is characterized by power law at low

frequencies. Figure 9 is an enlarged view of the area around the sector C in
which the power spectrum Figure 6 (C) was observed. The square drawn by
a solid line represents sector C in Figure 7 and it contains a block pointed out
with ’M’. This block ’M’ holds the value (zero at the moment) in register 7.
A pair of gliders flying into this sector moves the block ’M’ diagonally as the
content of the register changes. Power-law type power spectrum is observed
in 4 out of 12,160 sectors.
The power spectrum in Figure 10 is shown as an example of deviation

from power law. This power spectrum seems to exhibit power law at first
glance. But the residual sum of squares σ 2 is about 4.19. So this is not con-
sidered to be power law according to the criteria σ 2 ≤ 1.5 adopted in this
article. The position of this sector is depicted in the white square pointed
out with ‘D’ in Figure 7. In this sector a normal glider arrives and leaves four
times and also an LWSS arrives four times during 65,536 time steps. Because
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FIGURE 6
Typical examples of power spectra observed in some sectors. The x-axis is the frequency f ,
y-axis is power S. The top two are plotted on a semilogarithmic scale and the bottom on a
logarithmic scale. The broken line in the bottom represents the fitting of the power spectrum
from f = 1 to f = 100 by ln S ≈ α + β ln f with β = −2.00.

this sector is slightly active, its power spectrum closely resembles power
law.

3.3 Visualization of Computation Process
The spectral analysis of the computation process in the URM revealed that
the behaviour of sector is classified into four categories; null, white noise,
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A

B

C
D

FIGURE 7
Enlarged view of the top part of Figure 1. The white squares marked with ‘A’, ‘B’, ‘C’, and ‘D’
are the sectors where the respective power spectra in Figure 6 and Figure 10 are calculated.

FIGURE 8
Glider gun with period 60 (left) and period 30 (right). Gliders are periodically emitted towards
the lower right.

sharp peaks, and power law. Those are attributed to stationary, glider-passing,
periodic, and complex behaviour of the sector respectively. Now let us apply
these results to visualization of computation process. We represent the cate-
gory of sector’s power spectrum by a mark.
The left of Figure 11 is an enlarged view of the area surrounded by solid

line in Figure 1 and the right of Figure 11 is made by assigning each sector
a mark according to the shape of its power spectrum. The sector with power
spectrum characterized by null, white noise, sharp peaks, and power law is
depicted by a blank, white square, gray square, and black square respectively.
At a glance we can see that almost all parts of the configuration of the URM
does not work during the computation process.
The black squares are located in register 1, 7, and 10. These registers are

frequently rewritten during 65,536 time steps as shown in Table 3. This result
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M

FIGURE 9
Enlarged view of the area around sector C in Figure 7. The square drawn by a solid line is sector
C. The block marked with ‘M’ holds the value in the register.
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(D)

FIGURE 10
Power spectrum in the sector ‘D’ in Figure 7. The x-axis is the frequency f , y-axis is power S.
The residual sum of squares σ 2 in the range between f = 1 and f = 100 is 4.19.

is consistent with the observation that the sectors that has complex behavior
in TM constructed on the array of LIFE accompanies power law [14].
The white squares in the right of Figure 11 stand in line and that line

represents the track of pulse moving between components. The columns of
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FIGURE 11
Left: Enlarged view of the area surrounded by a solid line in Figure 1. Right: Picture drawn by
assigning each sector a mark according to the shape of power spectrum. Blank: null power, white
square: white noise, gray square: periodic behavior, black square: power law.

white squares on the left end of the picture are the track of latch read pulse
and latch clear pulse moving downward from latch header to latch footer.
The track linking register table and latch header is caused by Z/NZ pulse.
The tracks orthogonally connecting register table and table area are the trails
of execution pulse bent at operation merge. The horizontal tracks in table
area are drawn by execution pulse and latch set pulse.

4 DISCUSSION

We performed regional spectral analysis of the computation process of the
URM constructed on the array of LIFE by dividing the whole array into small
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FIGURE 12
Power spectrum averaged over the 12,160 sectors shown in the left of Figure 11. The broken
line represents the least square fitting of the power spectrum from f = 1 to f = 100 by by
ln S ≈ α + β ln f with β = −1.36.

sectors. The power spectrum in each sector can be classified into four cate-
gories. The first category is trivial power spectra that have null components
or have only DC component. This kind of power spectra means that the cell’s
state has never changed during the observed time steps. The second category
is white noise that is caused by rarely occurred events such as the passing
of pulse. The third category has sharp peaks caused by oscillator such as
glider gun. The fourth category is characterized by power law that is caused
by complex behaviour such as frequent modification in register. By assigning
the sector a mark according to its shape of power spectrum, we can visualize
the activity of the sector during the computation process.
Figure 12 shows the power spectrum averaged over the 12,160 sectors

shown in the left of Figure 11. The least square fitting of the power spectrum
from f = 1 to f = 100 by by ln S ≈ α + β ln f indicates β = −1.36 and
σ 2 = 0.68. So it is considered 1/f noise in our criteria.
An elementary CA rule 110 has been proved to be computationally univer-

sal through the means of emulating cyclic tag system (CTS), another compu-
tationally universal system. It is known that both LIFE and rule 110 have 1/ f
noise both in the transition from random configuration [15–17]. These results
suggest that CA rules supporting computational universality bring about 1/ f
power spectrum when it evolves from random configuration.
The evolution from random configuration exposes the genuine characteris-

tics of the rule itself. The behaviour during computation process is influenced
not only by the rule but also by the initial configuration that is elaborately
designed. When it comes to the computation process, LIFE and rule 110 dis-
play different power spectra. Rule 110 exhibits 1/ f noise also in the compu-
tation process by CTS [18]. During the computation process in rule 110, the
evolution goes through alternately two phases: periodic and chaotic phase. In
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the periodic phase, there never happen a collision between a stationary pat-
tern and a propagating pattern. When a propagating pattern passes through
a stationary pattern, the chaotic phase starts and lasts for a certain duration.
It seems likely that the recurrence of the periodic and chaotic phases virtu-
ally generates intermittency and it is one of the mechanisms to produce 1/ f
noise [19].
On the contrary LIFE exhibits almost flat line at low frequencies in the

power spectrum of the computation process by TM [14]. The power spectrum
of URM shown in Figure 12 is strikingly different from that of TM. These
results imply that the shape of power spectrum depends greatly on the choice
of the model of computation even though both of them are constructed on the
array of LIFE.
As a future plan, we are planning to coloring the sectors according the

value of exponent β and residual sum of squares σ 2 of power spectrum. By
making color image it might be able to visualize the computational activity
more vividly.
This paper is an extended version of work published in [20].
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