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ABSTRACT This work presents a new global optimization algorithm of functions inspired by the dynamic
behavior of reversible cellular automata, denominated Reversible Elementary Cellular Automata Algorithm
(RECAA). This algorithm adapts the reversible evolution rules in elementary cellular automata (in one
dimension and only with two states) to work with vectors of real values to realize optimization tasks. The
originality of RECAA lies in adapting the dynamic of the reversible elementary cellular automata to perform
exploration and exploitation actions in the optimization process. This work shows that diversity in cellular
automata behaviors (in this case, reversibility) is useful to define new metaheuristics to solve optimization
problems. The algorithm is compared with 15 recently published metaheuristics that recognized for their
good performance, using 50 test functions in 30, 500, and with a fixed number of dimensions, and the CEC
2022 benchmark suit. Additionally, it is shown that RECAA has been applied in 3 engineering problems.
In all the experiments, RECAA obtained satisfactory results. RECAA was implemented in MATLAB, and
its source code can be consulted in GitHub. https://github.com/juanseck/RECAA

INDEX TERMS Engineering applications, global optimization, metaheuristics, reversible cellular automata.

I. INTRODUCTION
In these times, the problems in engineering involve an
increasing number of variables, with a higher nonlinear
connection between them which makes their optimization
more challenging. This feature is clearly observed in vari-
ous application fields, such as mechanical design, chemistry
engineering, power electronics, or energy generation systems
problems [1].

In problems that, by their nature, are highly nonlinear,
and on many occasions, non-differentiable, non-separable,
and multimodal, the classic optimization algorithms based
on gradient methods are not effective since they are trapped
in local minima or lack the necessary conditions to converge
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properly [2]. In this situation, a great diversity of new meta-
heuristic algorithms have emerged which take inspiration
from the behavior of physical, biological, social, or artificial
systems to perform optimization tasks without depending
on the nature of the problem to solve [3]. Within these
methods, a significant trend is swarm intelligence algo-
rithms, in which the ability to find optimal values suddenly
emerges by the simple interaction of agents in the search
space [4].

Due to the No Free Lunch (NFL) Theorem [5], there is no
metaheuristic that is able to optimize all kinds of problems
better than the others. Thus, there is a need to continue
devising new metaheuristics capable of optimizing issues of
greater complexity and number of dimensions.

Cellular automata have been a highly recurrent model
for understanding how complexity arises from a population
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made up of simple elements interacting locally. The classical
cellular automata model is discrete in time, space, and in the
options of the possible states, each individual or cell may
possess. However, despite their simplicity, which makes them
easy to implement on a computer, they can produce com-
plex emergent global behavior [6]. For this reason, cellular
automata have been widely studied to analyze and simulate
physical, chemical, and biological phenomena [7].

An interesting type of cellular automata is one whose
overall behavior is reversible, provided a rule of evolution
that indicates how the local interaction between the cells of
the automaton takes place. This can be found as another rule
to go back in the temporal dynamics of the system until the
recovery of its original information. This kind of automata
is known as reversible, and they have also been extensively
studied to explain how local interactions can generate an
invertible global behavior [8].

In this way, the diversity of behaviors published and inves-
tigated in cellular automata offers a huge source of inspiration
to propose new metaheuristic optimization algorithms, anal-
ogous to how it has been done with the simplification and
adoption of natural systems for the same purpose.

In this sense, reversible cellular automata also offer a new
perspective to implementing a new metaheuristic algorithm
given their dynamic properties. These can be summarized as
their ability to preserve the initial information of the system,
the possibility of generating all possible states, and that each
state has a single ancestor, which can improve the exploration
of a search space adequately.

This paper also proposes adapting the evolution rules in
reversible elementary cellular automata (with only 2 states)
to be applied to vectors of real values. First, the evolu-
tion rules are adapted to be applied with the information
of two solutions or smart-cells to perform the exploration
task. Then, another rule uses only the information contained
in a single smart-cell to change it spontaneously and carry
out the mission of exploiting solutions. This algorithm is
named as reversible elementary cellular automata algorithm
(RECAA).

The original part of this work continues to adapt various
complex behaviors in cellular automata to propose meta-
heuristics for the global optimization of functions, as has been
done previously in [9] and [10]. This adaptation is material-
ized in an algorithm based on two new rules for exploration
and exploitation that are easy to implement.

RECAA is compared to other 14 metaheuristics widely
recognized for their flexibility and performance in solving
test optimization problems and engineering applications.

First, 50 test functions are taken for two experiments,
one experiment with 30 dimensions and the other with
500 dimensions, using Wilcoxon statistical tests to com-
pare and rank the algorithms [11]. Finally, RECAA is
applied to 3 engineering problems of different dimensionality
and used in the recent literature to compare their perfor-
mance against well-known algorithms, obtaining satisfactory
results.

The contributions of this work can be listed as follows:
• A new algorithm (RECAA) inspired by reversible cellu-
lar automata is presented for the global optimization of
functions.

• RECAA is easy to implement and is available on the
Github website at the link https://github.com/
juanseck/RECAA.

• The efficient performance of the RECAA is demon-
strated using test functions in multiple dimensions and
comparing it with state-of-the-art metaheuristics.

• RECAA is used as well in engineering problems, getting
satisfactory results.

• RECAA shows that cellular automata represent a vast
source of inspiration for the proposal of new optimiza-
tion metaheuristics.

This study is limited to optimize benchmark functions and
engineering problems at the simulation level, no implemen-
tations for real cases are presented. Being a metaheuristic,
RECAA will not have an efficient behavior in all problems
as proved by the NFL theorem [5], and RECAA will not
outperform an analytical method when it can be applied.
It is important to note that RECAA is proposed for con-
tinuous problems; other types of combinatorial optimiza-
tion problems, such as traveling salesman, routing, location,
or scheduling problems are not addressed in this work and
require an independent study.

On the other hand, the practical advantages lie in the easy
implementation of the algorithm, which does not require ade-
quate mathematical conditions to perform the optimization
process, and continues with the research line of emerging
cellular automata applications.

The manuscript is organized as follows. Section II shows
a representative review of current and relevant works in
swarm intelligence metaheuristics. Section III explains the
operation and characteristics of reversible elementary cel-
lular automata. Section IV describes the exploration and
exploitation rules and the general operation of the proposed
RECAA. Section V demonstrates the effectiveness of the
RECAA using 50 test functions on 30 and 500 and with a
fixed number of dimensions, comparing it statistically with
other 14 state-of-the-art metaheuristics, obtaining satisfac-
tory results. It also explains how the RECAAparameters were
selected and experimentally shows their convergence from
the exploration phase to the exploitation phase. Section VI
applies RECAA to three engineering problems currently
used to test and compare new metaheuristics, obtaining good
results. Finally, Section VII presents the findings and sug-
gests further work from this research.

II. REVIEW OF SWARM INTELLIGENCE METAHEURISTICS
The study of metaheuristics and intelligent algorithms has
been expanded in many ways, with the creation of various
algorithms inspired by different natural and social processes.
These algorithms are based on evolutionary operations where
a population of individuals is modified to a certain degree
through iterations.

112212 VOLUME 10, 2022

https://github.com/juanseck/RECAA
https://github.com/juanseck/RECAA
ALIROB
rubro 2.2.4



J. C. Seck-Tuoh-Mora et al.: New Algorithm Inspired on Reversible Elementary Cellular Automata for Global Optimization

Metaheuristics and intelligent algorithms have been suc-
cessfully used in many engineering applications due to their
uncomplicated computational implementation and ability
to solve complex problems. Intelligent algorithms can be
divided into nine groups depending on their inspiration:
biology-based, social-based, chemical-based, physics-based,
music-based, mathematics-based, sports-based, swarm-
based, plant-based, light-based, and water-based. The algo-
rithm proposed in this work falls under the group of
swarm-based or swarm intelligence algorithms (SI). Refer-
ences [12], [13] can be consulted for a detailed classification
of intelligent algorithms.

Swarm intelligence algorithms (SI), which belong to a
group of techniques based on the collective behavior of
self-organized and decentralized systems. These systems are
typically made up of a population of simple agents capable
of perceiving and modifying their environment, making the
communication possible between them, and simultaneously
detecting changes in their peers’ behavior. Although no cen-
tralized control structure usually dictates how agents should
behave, local interactions between agents typically lead to the
emergence of complex global behavior.

Some of the best-known algorithms include the particle
swarm optimization (PSO) [14] which mimics the dynamics
of birds using information exchange between individuals to
find a better solution. Ant colony optimization (ACO) [15]
which simulates the food gathering process that takes place in
ant colonies and has been applied in many discrete problems.
The artificial bee colony (ABC) [16] is based on the foraging
behavior of honey bees.

As mentioned, SI mainly simulates the collective behavior
of living organisms and uses social intelligence to obtain
optimal solutions in the search space in a cooperative manner.
All these algorithms share a basic structure of cooperative
and competitive behaviors among their population members,
using different model formulations, performancemetrics, and
adaptations to different problem scenarios.

Among the most recent SI algorithms, the Grasshop-
per Optimization Algorithm (GOA) stands out, inspired by
the swarming behavior of grasshoppers. This algorithm has
proven to be efficient in solving global unconstrained and
constrained optimization problems. However, the original
GOA has some drawbacks, such as the ease of falling into
local optima and the slow convergence speed [17]. Another
featured algorithm is the Whale Optimization Algorithm
(WOA) for global search. The WOA is a metaheuristic algo-
rithm that mimics the hunting behavior of humpback whales.
It introduces the chaotic initialization phase for the whale
swarm. Then, the Gaussian mutation is used to enhance the
diversity in the population and uses a chaotic local searchwith
a shrinking strategy to improve exploitation actions [18].

In [19], two new strategies were introduced in a syn-
chronized way in the WOA, comprised of the Lévy flight
previously used in the cuckoo search [20] and the chaotic
local search to guide the swarm and promote the balance
between the exploratory abilities and WOA search. In [21]

Harris’ hawk’s optimization is explained, which imitates
the cooperative behavior of birds. The HHO introduces two
Gaussian mutation strategies to get away from local optima
and a strategy of a dimensional decision previously applied
in the cuckoo searching method to improve the speed of
convergence. An improvement of HHO is proposed in [22]
by integrating a logarithmic spiral-based exploration strategy
with opposition learning and a local search technique with
Rosebrock’s method to obtain higher convergence accuracy.
The Fruit Fly Optimization Algorithm (FOA) [23] offers the
implementation of a simple and easy method. Nevertheless,
for problems in many dimensions, the FOA result can be
unsatisfactory and is prone to stagnation. An effective hunting
strategy has been introduced in [24] to improve these aspects,
inspired by whales to substitute the random searching plan
of the original FOA. The monarch butterfly optimization
(MBO) [25] is another relevant algorithm that simplifies
the migration of monarch butterflies. Butterfly positions are
updated by migration and adjustment operators. We also have
the [26] slime mold algorithm (SMA), based on the oscilla-
tion mode of slime mold in nature. The proposed SMA has
several new features and a unique mathematical model that
uses adaptive weights to simulate the producing process of
positive and negative feedback from the mold propagation
wave to obtain an optimal path to get food.

In the hunger games search (HGS) [27], an optimization
technique is proposed based on the behavior and activities
driven by hungry animals. The HGS incorporates an adap-
tive weight to simulate the effect of starvation at each step
of the search. In an attempt to go beyond methods based
on physical or biological systems simplifications, there is a
method based on the mathematical foundations of the Runge
Kutta numerical algorithm known as the Runge Kutta (RUN)
optimizer [28]. This method uses the logic of slope variations
calculated by the RK method as a search mechanism for
global optimization. Mathematical functions inspire another
algorithm, the Sine-Cosine Algorithm (SCA) [29]. It has also
been modified (MSCA) with control theory mechanisms,
including the Cauchy mutation operator, the local chaotic
search mechanism, in addition to opposition-based learning,
and two operators supported on differential evolution [30].
Recently, inspired by war strategies, the War Strategy Opti-
mization algorithm is proposed in [31], where the position
of the solutions is updated using two war strategies and an
adaptive mechanism that leads each soldier (or solution) to
perform exploration and exploitation tasks in a balanced way.

All these metaheuristic algorithms share similar character-
istics about searching stages that combine exploration and
exploitation actions in a balanced way to obtain satisfac-
tory results while solving different theoretical and physi-
cal problems. Similarly, recent works are inspired by the
dynamic behavior of cellular automata, taking advantage
of the great diversity of evolution rules which have been
proposed and studied in recent decades. Examples of these
optimization algorithms inspired by cellular automata for dis-
crete problems include cellular particle swarm optimization
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with a simple adaptive local search (CAPSO-SALS) [32],
local neighborhood search algorithm (LNSA) [33], and the
global-local neighborhood search algorithm (GLNSA) [34].
For continuous problems and searching global optima,
there are also the cellular particle swarm optimization
(CPSO) [35], [36], the continuous-state cellular automata
algorithm (CCAA) [9] and the majority-minority cellular
automata algorithm (MmCAA) [10].

This work seeks to contribute to this research field inspired
by reversible behavior in elementary cellular automata in
order to define a new global optimization metaheuristic that
is easy to understand and implement, and shows competitive
results against other recent metaheuristics already known for
their efficient performance.

III. BASICS ON REVERSIBLE CELLULAR AUTOMATA
A cellular automaton (CA) is an array of cells able to take
a value from a finite set of states. All cells’ array of states
is a configuration of the CA. The simplest case is one-
dimensional, where each cell checks its neighborhood (the
current and its neighbor’s state to each side) to establish its
new state at the next step. The mapping of neighborhoods
to states is known as the evolution rule. The evolution rule
generates the CA dynamics by mapping one configuration
onto another, establishing a discrete dynamic system both in
its states, in the number of neighbors that each cell checks,
and in the time steps that define the global behavior [6].

A one-dimensional CA is elementary (ECA) if each cell
has only two possible states, and each cell checks only the
state of its neighbor on each side to update its own state. It is
customary to manage configurations as rings with periodic
boundary conditions.

An ECA is reversible (RECA) if, given an evolution rule,
another can be found to get back into the system dynamics.
In other words, the evolution rule preserves the original infor-
mation of the system, and this can be recovered by applying
the inverse rule to get back to the initial configuration of the
system.

There are 6 RECA rules, their local dynamics can be
summarized as a cell considering only one neighbor’s state,
which can also be its own state, and copy or reverse it to
update its state in the next time step (Fig. 1).

Thus, a RECA is characterized by each configuration hav-
ing a single predecessor configuration, where each can be
generated as part of the RECA evolution and not only as an
initial configuration. In this way, a RECA can produce all
possible configurations for a given number of cells [8].

Given the ability of a RECA to generate the entire
configuration space, its behavior can serve as an inspira-
tion to establish a new metaheuristic algorithm for global
optimization.

IV. REVERSIBLE ELEMENTARY CELLULAR AUTOMATA
ALGORITHM (RECAA)
RECAs can generate any global state in the configuration
space by means of simple evolution rules. This property will

FIGURE 1. Evolutions of the six different RECAs, taking 100 cells,
100 time steps and different colors for 0 and 1 states.

be used to establish the behavior of the reversible elementary
cellular automata algorithm (RECAA). Based on the evolu-
tion rules, we will define analogous rules that work on vectors
of real numbers to establish exploration and exploitation
actions, knowing that RECAs have the property of being able
to generate all possible global states of the automaton.

The proposed RECAA first generates a random population
of solutions or smart-cells, where at each iteration of the
algorithm, each smart-cell generates a neighborhood with
new positions.

Each smart-cell is a vector of real values representing a
solution to the problem to be minimized. Each smart-cell
will have as many elements as the number of unknowns or
dimensions defining the problem to be optimized. Initially,
these smart-cells are generated randomly, taking care that
each real value belongs to the range of values allowed by the
problem. Each smart-cell will change its values by applying
rules inspired by the local behavior of RECAs.

In some cases, these rules will consider the information of
another smart-cell to generate a new position (exploration),
and in other cases, only the information of the same smart-cell
will be taken to obtain a new solution (exploitation). In the
end, the best value of the neighborhood of each smart-cell will
be chosen, and if this solution improves the original smart-
cell, its position will be updated.

As a population management strategy, elitism is used to
conserve the best smart-cells in each iteration, and solutions
worse than the original smart-cell will be accepted with a
certain probability in order to maintain the diversity of the
population and avoid stagnation of the solutions. The rules
for performing the exploration and exploitation tasks of the
proposed algorithm are presented below.

A. RULE FOR EXPLORATION USING TWO SMART-CELLS
The algorithm 1 presents the adaptation of the RECAs rule to
obtain new neighbor solutions of a smart-cell si using another
random smart-cell sj.
In the algorithm 1, first the resulting smart-cell evol

is matched to the initial si. Then the type of shift and
whether to take the complementary values of sj are selected
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Algorithm 1 Exploration Rule
Result: New smart-cell evol
Input: si, f (si), sj, f (sj), prop, lb, ub;
evol = si;
shift_type = randi(−1, 1);
comp_type = randi(0, 1);
shift = circshift(sj, shift_type);
if comp_type = 1 then

shift = up− shift + lb;
end
sum = f (si)+ f (sj);
pond = 1− (f (sj)/sum);
r = (rand · prop)− (prop/2);
forall the k in length(evol) do

if rand <= pond then
evol(k) = evol(k)+ (r · shift(k));

end
end

randomly. The randi() function randomly selects an integer
value between the first and second parameters.

The shift of the neighboring smart-cell is indicated by the
circshift() function, which performs a circular shift of sj from
one position to the left (type −1), no shift (type 0) or one
position to the right (type 1), analogously as done in the
evolution rules of RECAs.

The complementary value means taking the distance
shift − lb from the upper bound ub and is another adaptation
of the action of the RECAs rules that exchange binary values
but now operate with real values. The rule will have a higher
probability of changing the values of bmevol the larger f (si)
is with respect to f (sj).
To finish, in the last cycle the chosen values of bmevol are

transformed by adding a random proportion r of the values at
the same positions in bmshift , where r ranges from−(prop/2)
to (prop/2). This procedure is the proposed adaptation of
the RECAs rules to handle real values and will be employed
in the RECAA to perform the exploration of new solutions
in the search space. Figure 2 illustrates the operation of the
exploration rule.

B. RULE FOR EXPLOITATION USING THE INFORMATION
OF A SMART-CELL
The algorithm 2 shows the adaptation of the reversible rules
to obtain a new neighbor solution of a smart-cell si using only
its information.

In the algorithm 2, first match the resulting smart-cell evol
with the initial si. The type of shift and the option to take the
complementary values of si are specified at random.
The smart-cell shifts and the complementary value is per-

formed if necessary, similar to the RECAs evolution rules.
A random value r between 0 and prop is taken. A vector
diff of differences between the values of the smart-cell and
the obtained shift is calculated and weighted by r . The val-
ues bmevol are finally acquired by subtracting them from
the values obtained in bmdiff . This process is the proposed
adaptation for the information exploitation of each smart-cell.
Figure 3 exemplifies the operation of the exploitation rule.

FIGURE 2. Exploration rule for a smart-cell with 5 values.

Algorithm 2 Exploitation Rule
Result: New smart-cell evol
Input: si, prop, lb, ub;
evol = si;
shift_type = randi(−1, 1);
if shift_type = 0 then

comp_type = 1;
else

comp_type = randi(0, 1);
end
shift = circshift(si, shift_type);
if comp_type = 1 then

shift = up− shift + lb;
end
r = (rand · prop);
diff = (si − shift) · r ;
evol = evol − diff ;

C. RULE FOR ROUNDING VALUES IN A SMART-CELL
The rule in algorithm 3 is used to round randomly selected
values of a smart-cell to a fixed number of decimal values nr .
Depending on the actual value f (si), if it is close to the best
obtained cost f (bS ), then there will be a higher chance of
rounding. This rule was introduced in [9] and also used in [10]
and is very useful for bounding solutions in the later stages
of the optimization process, especially for engineering design
problems. Figure 4 depicts the operation of the rounding rule.

D. COMPLETE STRUCTURE OF THE RECAA
The complete pseudocode of RECAA is presented in
Algorithm 4. RECAA receives as input the number of smart-
cells ns, the number of neighbors per smart-cell nne, the
number of iterations nit , the number of elitist solutions nel , the
lower bound lb and upper bound ub for the elements of each
smart-cell, the number of dimensions nd and the functions f
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FIGURE 3. Exploitation rule for a smart-cell with 5 values.

Algorithm 3 Rounding Rule
Result: New smart-cell evol
Input: si, f (si), f (bS ), nr ;
evol = si;
sum = f (si)+ f (bS );
pond = 1− (f (si)/sum);
forall the k in length(evol) do

if rand <= pond then
evol(k) = round(evol(k), nr );

end
end

FIGURE 4. Rounding rule for a smart-cell with 5 values.

to optimize. First, the parameters for the operation of RECAA
are defined. The proportion prop in which the effect of the
evolution rules will be applied, the parameters lowerr and
upperr for the rounding rule, the probabilities probα and
probβ to select the type of rule to apply for each smart-cell
in each iteration and probγ to be able to choose solutions that
do not improve the current solution in order to avoid smart-
cell stagnation.

The initial population S is randomly generated, and each
solution is evaluated at f . In the optimization cycle, first, the
best nel smart-cells are kept, then for the rest, a neighborhood
of nne neighbors is generated by randomly selecting a rule
according to the probabilities probα and probβ and the best
solution is taken from each neighborhood. The new solution

replaces the original smart-cell if it improves its fitness value
in f or with a probability probγ otherwise. In the end, the best
smart-cell and its fitness value are returned.

To comply with the restrictions on upper and lower bounds
allowed for the optimal solutions, when RECAA obtains
smart-cells with a value that exceeds the allowed upper limit
ub, the algorithm returns the value to the valid interval by
selecting a random number between [ub − (ub − lb)/4, ub].
The analogous process is done in case a value falls below lb
by taking a random value between [lb, lb +(ub− lb)/4]. This
process has been previously implemented in similar algo-
rithms [9], [10], [36], obtaining satisfactory results. Figure 5
shows the flow chart of the proposed algorithm.

Algorithm 4 Reversible Elemental Cellular Automata
Algorithm (RECAA)
Result: Best smart-cell bS and fitness value f (bS )
Input: nS , nne, nit , nel , lb, ub, nd , f ;
Set parameters prop, lowerr , upperr , probα , probβ ,
probγ ;
Generate random population S of nS smart-cells;
Evaluate S in f ;
forall the i = 2 to nit do

Keep the best nel smart-cells in a new population;
forall the j = nel + 1 to nS do

Take sj and another random smart-cell sr from S
for the rule requiring an extra solution;
forall the k = 1 to nne do

Choose a random rule R from Algorithm 1
with probability probα , Algorithm 2 with
probability probβ and Algorithm 3 with the
remaining probability ;
Obtain evolk =
R(sj, additional parameters of the rule);
Check that the nd values of evolk are
between lb and ub and correct if necessary;
Calculate f (evolk );

end
Choose the best neighbor evol from the k
generated neighbors having a minimum cost
f (evol);
if rand < probγ or f (sj) > f (evol) then

sj = evol;
end

end
end
Return the best smart-cell bS and its fitness value f (bS );

E. COMPLEXITY ANALYSIS OF THE RECAA
The logical operations of RECAA are uncomplicated, so its
computational complexity is low. The following analysis is
calculated with big-O notation. The initialization of the nS
smart-cells has a complexity of O(nS · nd ). The evaluation
of each function is O(nS ), the elitist handling of solutions
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FIGURE 5. Flow chart of the RECAA.

implies saving the positions of the best nel smart-cells. This
process can be done simultaneously as the function eval-
uation, preserving the complexity of O(nS ). Updating the
values of each smart-cell depends on taking nne neighbors and
applying each randomly selected rule. The three rules have
complexity O(nd ), so the update of the smart-cells is given
by O(ns · nne · nd ). Thus, the total complexity of RECAA
is O(nit · ns · nne · nd ). This complexity is similar to the
computational cost of many newer algorithms proposed for
global optimization [12], [13], [31].

V. EXPERIMENTATION WITH BENCHMARK FUNCTIONS
IN DIFFERENT DIMENSIONS
Table 1 presents the 50 test functions used to test the effec-
tiveness of RECAA. The first 16 functions are unimodal

TABLE 1. Benchmark functions.

and are used to test the exploitability of metaheuristics.
The following 17 multimodal functions test metaheuristics
exploration properties and local minima escapability. The
final 17 functions have a fixed dimension and contem-
plate several local minima to test the trade-off between an
algorithm’s exploration and exploitation actions. The spec-
ification and properties of these functions can be found
in [11] and [37], and their computational implementation can
be reviewed from http://www-optima.amp.i.kyoto-u.ac.jp/
member/student/hedar/Hedar_files/go.htm and http://www.
sfu.ca/~ssurjano/optimization.html.

The algorithms that were taken to perform the compu-
tational experiments are the aquila optimizer (AO) [38],
the Archimedes optimization algorithm (AOA) [39], the
heap-based optimizer (HBO) [40], the hunger game search
(HGS) [27], the Harris hawk optimization (HHO) [21], the
adaptive differential evolution based on the success history
adaptive differential evolution with linear reduction in pop-
ulation size (LSHADE) [41], the LSHADE with semipa-
rameter adaptation hybrid with CMA-ES (LSPACMA) [42],
the marine predator algorithm (MPA) [43], the modified
sine cosine algorithm (MSCA) [30], the political optimizer
(PO) [44], the pure randomized orthogonal search (PROS)
algorithm [45], the Pareto-like sequential sampling (PSS)
heuristic [46], the slime mould algorithm (SMA) [26], and
the weighted superposition attraction (WSA) [47].

These algorithms have been published recently and are
recognized for their effectiveness in optimizing unimodal
and multimodal problems in multiple dimensions. Thus, they
represent a suitable set of metaheuristics for analyzing and
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TABLE 2. Parameter settings of algorithms employed for comparison with
RECAA.

weighting RECAA against state-of-the-art algorithms. The
parameter settings for these fourteen algorithms are taken
from their original papers and are given in Table 2.
The original Matlab implementations of these algorithms

were taken directly from the web addresses indicated in the
reference articles. The Matlab code of RECAA can be down-
loaded on Github from the link https://github.com/juanseck/
RECAA.

RECAA and the other algorithms were executed in Matlab
2015a on a 3.1 GHz Intel Xeon CPU and 64 GB in RAMwith
amacOSBig Sur operating system. 30 independent runs were
made for each algorithm on every benchmark function.

RECCA was executed with nS = 12 and nne = 6, for the
rest of the algorithms (nS ) = 72 individuals were used, all
algorithms applied nit = 500 iterations. The starting search
points in the optimization process are defined by every algo-
rithm, respecting the original implementation and favoring a
fair comparison.

A. PARAMETER TUNNING OF RECAA
In the experiments performed, the number of smart-cells,
neighbors, and iterations were fixed with the values men-
tioned above. For the rest of the parameters that define
the behavior of the rules in RECAA (elitism nel , ratio
prop and rounding limits lowerr and upperr ), an experi-
ment was performed with three levels for each parameter,
taking the test functions F14 (unimodal), F30 (multimodal)
in 30 dimensions, and F43 with fixed dimensions to select
the combination of parameters with the best minimization
results.

For the elitism part, 1, 2 and 3 levels were tested for nel ;
for the prop ratio used in the RECAA rules, three values 1.4,
1.7 and 2 were experimented. To establish the rounding value
nr in the 3 rule, the values 0, 1, and 2 for lowerr as the lower
bound and the values 5, 6, and 7 for upperr defining the upper
rounding bound were tried. In total, 81 combinations were
tried, each with 30 independent runs on the test functions
to obtain the most suitable set of parameters utilizing the
best average value. The parameters selected for comparative
testing with other state-of-the-art algorithms are presented in
Table 3.

TABLE 3. Parameter settings of the RECAA.

B. CONTRIBUTION OF RULES IN THE EXPLORATION AND
EXPLOITATION OF THE SEARCH SPACE
Three different types of rules are used in RECAA, one
from Algorithm 1 for exploration of the search space by
exchanging information between smart-cells and those from
Algorithms 2 and 3 for exploitation of the information of each
smart-cell individually.

The following experiment was performed to visualize the
type of rules acting more relevant during optimization. For
some selected test functions, RECAA was run, and at each
iteration, the best neighbor was observed, and the rule used
at the time was kept when it improves the smart-cell. If the
rule is an exploration rule, a value of 10 was accumulated.
If it is an exploitation rule, only a value of 1 was accu-
mulated. For a proper optimization process, a high value
should be observed in the record of rules that improve a
solution indicating an intense exploration phase and then
decrease, indicating the change to the exploitation phase of
solutions.

This experiment was applied to the same functions
employed to tune the RECAA parameters (F14,F30,F43)
making 30 independent runs and taking the average of the rule
values that caused smart-cell improvements in each iteration.
The results are presented in Fig. 6.

In the experiment, it can be observed that the action of the
exploration rule is more intense in the initial iterations of the
algorithm, to then move on to the exploitation stage where
the rules of the algorithms 2 and 3 become more significant
to finish the optimization process.

C. FIRST EXPERIMENT WITH BENCHMARK FUNCTIONS
IN 30 AND FIXED DIMENSIONS
In this experiment, the first 33 test functions were taken
in 30 dimensions, and the following 17 functions are
fixed-dimensional according to Table 1. 30 independent runs
were made for each algorithm, saving the average value
and standard deviation for each case. Table 5 shows the
results obtained for the unimodal, multimodal, and fixed-
dimensional functions, where the best results for all algo-
rithms are presented in bold with an orange background.

RECAA calculated 15 of the 16 best average values for
the unimodal functions, performing similar to MSCA and
outperforming the rest of methods. RECAA also obtained
15 of the best values for standard deviation, demonstrat-
ing its exploitability. RECAA achieved 11 of the 17 best
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FIGURE 6. Rules weighted in the optimization process to show the
transition from exploration to exploitation.

average values for the multimodal case. This result is only
surpassed by the PO, which obtained 13 best average val-
ues; the other methods were below RECAA. RECAA also
obtained 11 better values in the standard deviation, proving
its capacity to exploit information. In the case of fixed-
dimensional functions, RECAA computed 6 best average
values, being outperformed by the HBO, HGS, LSHADE,
and LSPACMA algorithms and with a similar number of
best results as MPA and PO. RECAA generated 6 better
values concerning standard deviation, showing a competitive
balance between information exploration and exploitation for
fixed-dimensional problems.

Table 4 presents the results of the Wilcoxon rank-sum
statistical test comparing RECAA with each of the other
methods for each test function, where the symbol + repre-
sents a better result that is statistically significant, the symbol
approx indicates no significant difference, and − indicates
a worse statistically significant result. The Avg column lists
each algorithm’s average rank obtained by optimizing the test
functions, and the Rank column shows the order in which
each algorithm is ranked according to its average. RECAA
obtained the second-best rank behind PO. It should be noted
that RECAA outperformed PO by 14 test functions and was
outperformed by fewer functions (13) by this algorithm. For
the rest of the methods, RECAA obtained a more significant
difference with respect to the number of functions with a
better result in this experiment.

TABLE 4. Wilcoxon rank-sum test and ranking of the compared
algorithms on 30D and fixed problems.

D. SECOND EXPERIMENT WITH BENCHMARK
FUNCTIONS IN 500 AND FIXED DIMENSIONS
In this case, the 33 unimodal and multimodal functions were
taken in 500 dimensions, and the last 17 functions were in
fixed dimensional. For each algorithm, another 30 indepen-
dent runs were run, calculating the average value and standard
deviation. The best results for all algorithms are shown in bold
with an orange background (Table 6).

RECAA obtained 13 of the best average values for the
unimodal functions, performing similar toMSCA and outper-
forming the other algorithms. RECAA obtained 14 minimum
values for standard deviation, proving its exploitability for
higher dimensions.

RECAA achieved 12 out of 17 best average values for
the multimodal case. In this experiment, the other algorithms
fell below RECAA. RECAA generated 12 minimum values
in the standard deviation, confirming its good information
exploitation. RECAA obtained 5 of the best average val-
ues for the fixed-dimensional functions, with a performance
below the HBO, HGS, LSHADE, LSPACMA, MPA, and PO
algorithms. RECAA generated 5 better values concerning
the standard deviation, again showing an acceptable balance
between exploration and exploitation actions in this type of
problem.

Table 7 shows the Wilcoxon rank-sum statistical test
comparing RECAA with the other methods. RECAA again
obtained the second-best rank behind PO. In general, RECAA
obtained a more significant or equal difference (in the case
of PO) with respect to the number of functions with a better
result in this experiment. Fig. 7 shows some examples of
the convergence curves for different test functions in 30 and
500 dimensions, as well as in the functions with fixed dimen-
sions. Only the algorithms with the best results are presented
in these examples.

E. THIRD EXPERIMENT WITH CEC 2022 BENCHMARK
FUNCTIONS
In the last experiment, the CEC 2022 set of 12 benchmark
functions were taken in 20 dimensions, including shifted,
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TABLE 5. Metaheuristics compared with RECAA on 30 and fixed dimensional problems.

rotated, composed and hybrid functions (Table 8). The imple-
mentation and properties of these functions can be found in
https://github.com/P-N-Suganthan/2022-SO-BO.

These benchmark offers a set of more challenging func-
tions to be optimized. Therefore, for each algorithm, (nS ) =
120 individuals were used, meanwhile RECCA was exe-
cuted with nS = 20 and nne = 6. All algorithms applied

nit = 2000 iterations, and 30 independent runs were con-
ducted for each algorithm, calculating the average value and
standard deviation. Table 10 presents the obtained results, the
best ones are shown in bold with an orange background.

RECAA obtained 3 of the best average values for
the CEC 2022 functions, performing below the LSHADE
and LSPACMA; and outperforming the other algorithms.
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TABLE 6. Metaheuristics compared with RECAA on 500 and fixed dimensional problems.

RECAAgenerated 3 better standard deviation values, demon-
strating an acceptable balance between exploration and
exploitation. Table 9 shows the Wilcoxon rank-sum statisti-
cal. RECAA obtained the fourth-best rank behind LSHADE,
MPA and very similar to LSPACMA. In general, RECAA
obtained a positive difference for 11 of the 15 methods with

respect to the number of functions with a better result in this
experiment.

The proposed RECAA is simple and takes lesser execution
time than almost all other algorithms for CEC 2022 functions.
The average time of each algorithm was calculated for the
12 functions, and the results are illustrated in Fig. 8. It can be
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FIGURE 7. Convergence curves of the RECAA in several test functions.
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TABLE 7. Wilcoxon rank-sum test and ranking of the compared
algorithms on 500D and fixed problems.

TABLE 8. CEC 2022 Single-objective bound-constrained benchmark
functions.

TABLE 9. Wilcoxon rank-sum test and ranking of the compared
algorithms on CEC 2022 problems.

seen that RECAA runs faster than 11 of the other 14 methods
selected for comparison, with a run time very similar to AOA
and slightly longer than LSHADE and WSA, demonstrating
the competitiveness of RECAA in terms of execution time.

F. ANALYSIS OF CONVERGENCE OF THE RECAA
For a metaheuristic to posses an acceptable behavior,
each individual must have abrupt position changes in the

FIGURE 8. Average running time for the compared algorithms for CEC
2022 functions.

initial stages of the optimization process, indicating a good
exploration process. These changes should be reduced as the
process progresses and reaches its final stage to focus on
exploiting the regions already detected as close to the optimal
values (Van Den Bergh and Engelbrecht 2006). This dynamic
can ensure that the metaheuristic converges to a position in
the search space.

Fig. 9 shows the optimization process of RECAA on 9 test
functions, the first 3 unimodal, the next 3 multimodal, both
cases in 500 dimensions, and the last 3 with fixed dimen-
sions. This experiment takes 50 independent runs of the
RECAA with the parameters presented in Table 3 and the
average values in the evolution of the 50 best smart-cells.
This experiment was conducted to obtain the convergence
and transition characteristics of the RECAA exploration-to-
exploitation process.

In Fig. 9, the first column describes the function to be opti-
mized in two dimensions. The second column shows the aver-
age movement of the first value of the best smart-cell in each
iteration. The third column presents the average Euclidean
distance between the previous and the current position of the
best smart-cell in each iteration. The fourth column shows the
weighted exploration-exploitation process as done in Fig. 6,
while the last column presents the average convergence to the
optimal value of the best smart-cell.

This experiment indicates that initially, RECAA performs
an extensive search for optimal values in the search space
characterized by the exploration rules and abrupt changes
weighing more in the position of the smart-cells. These
changes gradually decrease to favor the exploitation of
promising areas in the search space, with minor changes in
the last iterations due to the increased use of the exploitation
rules. This experiment exemplifies the proper functioning of
RECAA in the different test functions, where the convergence
curves have an accelerated decay in the initial part of the
process to prioritize the exploitation part at the end.
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TABLE 10. Metaheuristics compared with RECAA on CEC 2022 problems.

One of the reasons for the superior performance of the
RECAA is the application of a cellular automaton-type
neighborhood, where concurrent exploration and exploitation
actions are used, and the best neighbor is chosen as the new
smart-cell.

This simultaneous action of the rules to obtain new solu-
tions allows a fast convergence in the early stages of opti-
mization. For multimodal functions, the performance of the
RECAA is similar to the PO and superior to the rest of the
algorithms.

The random behavior in the concurrence of rules allows
RECAA as well to obtain a good performance in the exploita-
tion process. This feature can be seen in the results of RECAA
for unimodal functions, where it performs similarly toMSCA
and is superior to the rest of the algorithms.

The same concurrence of rules allows RECAA to escape
local minima and obtain better optimal values. This property
can be observed in the fixed-dimensional functions, where
RECAA obtains consistent results that are better than most
of the algorithms taken for comparison.

In summary, the application of a neighborhood with simul-
taneous exploration and exploitation actions, elitism, the
random component in the application of the rules, and the
selection of the best neighbor to update each smart-cell are
critical factors for a good performance in both exploration
and exploitation actions. Finally, the simplicity of the rules
permits the utilization of RECAA for increasing dimensional
problems, making it attractive for applications in various
areas.

In the next section, RECAA is applied to several engineer-
ing problems to demonstrate its performance.

VI. APPLICATION IN ENGINEERING PROBLEMS
This section reviews three engineering problems treated in
recent works and characterized by their complexity, dimen-
sionality, and constraints that must be met for their solution.

RECAA employs a scalar penalty function for constraint
handling, where solutions that do not meet the constraints
are penalized by considerably increasing their fitness value,
for instance, adding a value of 10000 for each constraint

violation. This approach is easily implemented and offers
good results without implying an increment of the compu-
tational complexity [48]. For each problem, 30 independent
runs were taken to compare the best results against those
published in recent literature.

A. TENSION/COMPRESSION SPRING DESIGN
In this first engineering case, the objective is to optimize
the design of a tension/compression spring by minimizing its
weight.

The problem has 3 variables y = (y(1), y(2), y(3)) to
calculate the weight; the wire diameter y(1), the average
coil diameter y(2) and the number of coils y(3) [44], [49].
Figure 10 presents the description of these variables. The
problem also has 4 constraints, and its mathematical formu-
lation is presented in Eq. 1.

min f (y) = y(1)2y(2)(2+ y(3))

Subject to:

g1(y) = 1−
y(2)3y(3)
71785y(1)4

≤ 0

g2(y) =
4y(2)2 − y(1)y(2)

12566y(2)y(1)3 − y(1)4
+

1
5108y(1)2

− 1 ≤ 0

g3(y) = 1−
140.45 y(1)
y(2)2y(3)

≤ 0

g4(y) =
y(1)+ y(2)

1.5
− 1 ≤ 0

where :

0.05 ≤ y(1) ≤ 2.0

0.25 ≤ y(2) ≤ 1.3

2.00 ≤ y(3) ≤ 15.0 (1)

For this problem, the RECAA is compared to the pub-
lished results using the war strategy optimization [31],
the Nelder-Mead simplex search and particle swarm opti-
mization (NM-PSO) [50], the political optimize (PO) [44],
the differential evolution with dynamic stochastic selection
(DEDS) [51], the hybrid evolutionary algorithm and adaptive
constraint-handling technique (HEAA) [52], the differential
evolutionwith level comparison (DELC) [53], the water cycle

112224 VOLUME 10, 2022



J. C. Seck-Tuoh-Mora et al.: New Algorithm Inspired on Reversible Elementary Cellular Automata for Global Optimization

FIGURE 9. Average of movement, distance, exploration-exploitation weighting, and convergence of the best smart-cell in the RECAA.
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FIGURE 10. Tension/compression spring design.

TABLE 11. Comparison of the best solutions obtained for the
tension/compression spring design problem.

algorithm (WCA) [54], and the modified adaptive differential
evolution (MADE) [55].

For the operation of RECAA, the parameters indicated in
Table 3 were considered, except for the number of iterations,
which was taken as nit = 50 to be in correspondence with
the experiment performed in [44]. The results obtained by the
RECAA and their comparison with the other algorithms are
presented in Table 11

The results show that RECAA obtains the third-best result
among the compared algorithms, very close to NM-PSO. It is
worth mentioning that the solution found by the NM-PSO
does not meet some of the constraints of Eq. 1, as pointed
out in [44]. Thus, RECAA finds a solution that addresses
all the constraints of the problem and is comparable to those
obtained by recent and well-tested algorithms.

B. MULTIPLE DISK CLUTCH BRAKE PROBLEM
The optimization of this problem needs to find discrete val-
ues. For this reason, a version of RECAA was used that
simply rounds the values of each individual after applying
the evolution rules. The objective is to minimize the mass of
the multiple disk clutch brake, which depends on a vector y
of 5 variables, the inner radius y(1), the outer radius y(2), the
disk thickness y(3), the actuator force y(4), and the number of
surfaces in friction y(5). Figure 11 describes this system.

The problem contemplates 8 nonlinear constraints. The
mathematical model is presented in Eq. 2.

min f (y) = π(y(2)2 − y(1)2)y(3)(y(5)+ 1)ρ

Subject to:

g1(y) = y(2)− y(1)−1r ≥ 0

FIGURE 11. Multiple disk clutch brake design.

TABLE 12. Comparison of the best solutions obtained for the multiple
disk clutch brake problem.

g2(y) = Lmax − (y(5)+ 1)(y(3)+ δ) ≥ 0

g3(y) = Pmax−Prz≥0 g4(y) = Pmaxvsr max−Przvsr≥0

g5(y) = vsr max − vsr ≥ 0 g6(y) = Tmax − T ≥ 0

g7(y) = Mh − sMs ≥ 0 g8(y) = T ≥ 0

where:

ρ = 0.0000078kg/mm3 1r = 20 mm Lmax = 30mm

δ = 0.5 Pmax = 1MPa Prz =
y(4)
A

N/mm2

A = π(y(2)2 − y(1)2)mm2 vsr max = 10m/s

vsr =
πRsrn
30

mm/s

Rsr =
2
3
y(2)3 − y(1)3

y(2)2y(1)2
mm n = 250rpm Tmax = 15s

T =
Izπn

30(Mh +Mf )
mm Iz = 55kg/m2

Mh =
2
3
µy(4)y(5)

y(2)3 − y(1)3

y(2)2 − y(1)2

Mf = 3Nm µ = 0.5 s = 1.5 Ms = 40Nm

60 ≤ y(1) ≤ 80 90 ≤ y(2) ≤ 110 1 ≤ y(3) ≤ 3

0 ≤ y(4) ≤ 1000 2 ≤ y(5) ≤ 9 (2)

In this case, the published results using the teaching-
learning-based optimization (TLBO) [56], the water cycle
algorithm (WCA) [54], the passing vehicle search (PVS) [57]
and the hunger games search (HGS) [27] are taken as a
comparison. RECAA again uses the parameters indicated in
Table 3, with a number of iterations nit = 50 to correspond
with the experiments performed on the algorithms taken as
reference. The comparative results obtained by the RECAA
are shown in Table 12.
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FIGURE 12. Scheme of the topology optimization.

In Table 12 RECAA obtains the best result among the
compared algorithms, fulfilling all the problem’s constraints.
This result shows that RECAA is suitable for optimizing the
multiple disk clutch brake problem.

C. TOPOLOGY OPTIMIZATION
This problem involves optimizing the material distribution to
build a structural support element where a predefined set of
loads is considered. In this problem, we have a vector y with
N = 30 design variables to specify the structure’s geometry,
with N inequalities of design constraints. Figure 12 gives a
scheme of this case.

A formulation of the problem can be found in [58]; the
mathematical model is presented in Eq. 3.

min f (y) = uTKu =
N∑
i=1

(y(i))puTi Kui

Subject to:

g1(y) =
V (y)
V0
− h = 0

g2(y) = Ku− h = 0

where:

0 ≤ ymin ≤ y ≤ 1 (3)

where h is the force vector, u is the global displacement
vector, K is the global stiffness matrix, ui are the elements of
each vector, ymin is a positive vector of minimum densities,
p = 3 is a penalty power, V (y) and V0 represent the material
volume and the design volume, and h is the prescribed volume
fraction.

Here, we compare the published results using the improved
unified differential evolution algorithm (UIDE), the matrix
adaptation evolution strategy (MAES), the linear success-
history-based adaptive differential evolution (LSHADE), and
the atomic orbital search (AOS) [31]. RECAA again takes the
parameters from Table 3 with nit = 50 iterations to fit with
the algorithms taken as reference. The comparative results are
presented in Table 13.

TABLE 13. Comparison of the best solutions for the topology
optimization problem.

The results show that RECAA calculates a result almost
identical to AOS and is competitive with those obtained by
algorithms well-known for their excellent performance.

VII. CONCLUSION AND FURTHER WORK
This paper presents a new global optimization algorithm
called RECAA inspired by evolution, neighborhood and local
interaction rules of reversible elementary cellular automata.
The randomness, concurrency, and information exchange
between the smart-cells generated by applying the different
rules, produce an appropriate balance between exploration
and exploitation actions during the optimization process.

Parameter tuning and comparative computational test-
ing was done with 50 test functions, 16 unimodal and
17 multimodal functions in 30 and 500 dimensions, plus
17 fixed-dimensional functions. The three groups were used
to evaluate RECAA and its balance between exploration and
exploitation and were compared against other 14 recently
published algorithms recognized for their efficiency. The
experiments showed satisfactory performance of RECAA.

Engineering problems used in recent literature were also
taken to test RECAA against results obtained by other recent
methods. RECAA also demonstrated its high quality in find-
ing solutions to these problems, proving, in general, its com-
petitiveness against other recent metaheuristics.

Proposed future work is to continue drawing inspiration
from other dynamic behaviors of cellular automata such as
the complexity of well-known rules like Rule 54, Rule 110,
or LIFE, the non-trivial collective behavior of other types of
automata such as reaction-diffusion, traffic, memory usage,
lattice gases, among others to establish new metaheuristic
algorithms. Another line of research is to adapt RECAA with
multi-objective strategies to address a more extensive number
of problems. applications and extensions.
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