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Abstract This is a short review of selected results related to JohnConway’sGame of
Life cellular automaton. The review is based on our participation in the “A Tribute to
Conway: A Lectures Series on the Memory of John Horton Conway” (https://youtu.
be/WqKkmfOt9Ww), celebrated virtually in India and organized by Sukanta Das
and Kamalika Bhattacharjee in 2020. Additional contributions are made by Andrew
Adamatzky and Juan C. Seck-Tuoh-Mora.
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1 The Game of Life

The Game of Life is an elegant, simple and compact semi-totalistic function that
brings together artificial life, complex system, emergent behavior and non-linear
systems. The Game of Life cellular automaton is the most famous rule into the
cellular automata literature and one of the most researched during most of 50 years.
There are two excellent repositories where you can explore any Life objects and
recently discovered Life patterns and complex structures: Conway’s Game of Life
http://www.conwaylife.com/ and LifeWiki https://www.conwaylife.com/wiki/.
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Between 1969 and 1970 Conway designed and published his famous two-
dimensional cellular automaton “The Game of Life” in the popular column of Sci-
entific American edited by Martin Garden [14].

The Game of Life is recognized as the second important stage in the cellular
automata literature after John von Neumann self-assembling machines (see [23]).
Main difference between vonNeumann andConway automata is the kind of function,
while von Neumann used an orthogonal neighbourhood, Conways used an isotropic
relation in two dimensions, it is the Moore neighbourhood. The Game of Life uses
a binary alphabet ! = {0, 1}, where state one depicts alive organisms and state zero
nothingness (empty space).

The Game of Life is the evolution (semi-totalistic) rule R(2333) (Carter Bays
notation) or B3/S23. The rule belongs satisfies the following conditions.

Birth: an empty cell adjacent to exactly 3 neighbours is a birth cell the next
time.

Survival: a live cell with 2 or 3 neighbouring counters survives for the next gen-
eration.

Death: a cell with 4 or more neighbours dies (becomes empty) from overpopu-
lation. Every live cell counter with 1 neighbour or none dies (becomes
empty) from isolation.

Conwayproposed twocharacteristics thatwere key to inducenon-trivial behaviour
in the Game of Life.

• The function will not disappear quickly (equilibrium).
• The function will grow forever (expansion).

This combination would produce a number of active cells with possibilities of
interacting in different landscapes. So, several patterns were proposed and the acorn1

pattern was one of the most interesting configurations, found in 1971. A role of the
acorn pattern is historically important in the search of universe of small configurations
with unpredictable evolution.

Acorn is an excellent example where a simple (compact) pattern can evolve to
patterns with a non-trivial behaviour in long span of time. Figure1a illustrates the
acorn pattern shaped by seven cells in state one in the lattice of 3 × 7 cells. In Fig. 1b
we can see the density history during its evolution which grew quasi-constantly
before reaching its stability. So, Fig. 1c presents a three-dimensional projection of
this acorn evolution concatenating every two-dimensional plane successively, where
chaotic regions do not stop or emerge and some few gliders escape from the central
area. Acorn evolution reached its stability in generation 5206 with a final population
of 633 cells.

Particularly, David Eppstein specifies that Wolfram’s classes can be related as
patterns [11].

1 https://www.conwaylife.com/wiki/Acorn.
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(a) (b)
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Fig. 1 a Acorn pattern shaped by seven cells in state one. b History density evolution of acorn. c
Three-dimensional projection of acorn evolution (a video of this evolution is available from https://
youtu.be/NADVWj1-KS4)

1. Evolution leads to a homogeneous state.
2. Evolution leads to a set of separated simple stable or periodic structures.
3. Evolution leads to a chaotic pattern.
4. Evolution leads to complex localized structures, sometimes long-lived.

In this direction, the Game of Life belongs to class 4 where well-defined mobile,
periodic or stable localized structures emerge during evolution. A way to try to
understand this characterization is with the mean field approximation proposed by
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Fig. 2 Mean field curve for
the Game of Life
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Howard Gutowitz [17]. Mean field approximation is a useful tool which calculates
averages of intervals assigning probabilities to each element of the alphabet expressed
as a polynomial. This approximation assumes that the elements are independent.
This way, across the number of fixed points Harold V. McIntosh characterized this
classification as follows [22]:

1. Monotonic, entirely on one side of the diagonal.
2. Horizontal tangency, curve never reaches diagonal.
3. No tangencies, curves cross diagonal.
4. Horizontal plus diagonal tangency, no crossing.

The Game of Life polynomial is the following: pt+1 = 84 p3t q
6
t + 56 p4t q

5
t . So,

its graphical curve is illustrated in Fig. 2. The first stable fixed point at the origin
guarantees its stable state pt+1 = 0, the second unstable point pt+1 = 0.1986 relates
to areas of densities where the space–time dynamic is unknown. The last stable
point in pt+1 = 0.37 indicates that the Game of Life will converge almost surely to
configurations with small densities of states one.

Some relevant results in the Game of Life are enumerated below. The history of
relevant results in the Game of Life is filled with accumulative results from a large
number of researchers, which begins with the famous newsletter Lifeline [27] which
reincarnated in a very-well organized and specialized site Forums for Conway’s
Game of Life.2

1. Register machine (Conway, 1982) [6].
2. Turing machine (Paul Rendell, 2001) [26].
3. Life universal computer (Paul Chapman, 2002) [7].
4. Algorithms to find complex patterns (David Eppstein, 2002) [12].
5. Still life theory (Matthew Cook, 2003) [10].

2 https://www.conwaylife.com/forums/.
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6. Spartan universal computer-constructor (Adam P. Goucher, 2009) [16].

Newsletters and books dedicated to the Game of Life (chronological order).

1. Lifeline newsletter (Robert Wainwright, 1971) [27].
2. The Recursive Universe (William Poundstone, 1985) [25].
3. New Constructions in Cellular Automata (David Griffeath, Cris Moore (Eds.),

2003) [15].
4. Game of Life Automata (Andrew Adamatzky (Ed.), 2010) [1].
5. Universal Turing machine (Paul Rendell, 2016) [26].

Some particular patterns (chronological order).

1. Glider (Richard K. Guy, 1969) https://www.conwaylife.com/wiki/Glider.
2. Glider gun (BillGosper, 1970) https://www.conwaylife.com/wiki/Gosper_glider_

gun.
3. Puffer train (Gosper, 1971) https://www.conwaylife.com/wiki/Puffer_1.
4. Eater (Gosper, 1971) https://www.conwaylife.com/wiki/Eater_1.
5. Garden of Eden (RogerBanks, 1971) https://www.conwaylife.com/wiki/Garden_

of_Eden.
6. Self-replicator (Dave Greene, 2013) https://www.conwaylife.com/wiki/Linear_

propagator.

Some semi-totalistic functions, variants, and projections (chronological order).

1. Inkspot, renamed as Life without Dead (Tommaso Toffoli, Norman Margolus,
1987) https://www.conwaylife.com/wiki/OCA:Life_without_death.

2. Three dimensions (Bays, 1987) [4].
3. HighLife (Nathan Thompson, 1994) https://www.conwaylife.com/wiki/OCA:

HighLife.
4. Triangular, Pentagonal, Hexagonal (Bays, 1994) https://cse.sc.edu/~bays/CA

homePage.
5. Hexagonal (Paul Callahan, 1997) http://www.radicaleye.com/lifepage/hexrule.

txt.
6. Seeds (Brian Silverman, 1996) https://www.conwaylife.com/wiki/OCA:Seeds.
7. Larger-than-Life (Kellie Michele Evans, 1996) https://www.conwaylife.com/

wiki/Larger_than_Life.
8. Penrose (M. Hill, S. Stepney, F. Wan, 2005) https://www-users.cs.york.ac.uk/

susan/bib/ss/nonstd/penroselife.htm.
9. Four dimensions (Bays, 2009) [5].

Some systematic characterizations in the Life-like rules were reported initially by
Magnier et al. in 1997 [24], some years later Adamatzky et al. in 2010 explore the
full range of semi-totalistic rules [2].

In [2] we represent dynamical complements as illustrated in Fig. 3 morphology-
based classification. Stable orbit matches uniform behavior with nill density of cells
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Fig. 3 Diagram of
dynamical complements of
morphological classification

in state 1. The periodic orbit is typical for configurations that are usually dom-
inated by stationary localizations, still life and cycle life. Quasi-stable density is
a class where cellular space is dominated by quasi-periodic density regions, they
have very close density values although they are not exactly in the same position. It
is known as collective behaviour [8]. Unstructured and unstable density represents
chaotic behaviour. The last class is characterized by “indefinite” density and complex
behavior (Fig. 3).

The Game of Life is a robust complex rule. A cellular automaton has robust
dynamics with respect to a composition function if such dynamics preserve emergent
behaviour later of such composition (for details see [18]). We compose the Game
of Life function with a function of memory. Particularly, we use the majority and
minority memory functions (Fig. 4).

Cellular automata with memory are an extension of the original model in such
a way that every cell xi is allowed to remember its states during some fixed period
of its evolution. Cellular automata with memory have been proposed originally by
Alonso-Sanz [3]. This way, we implement a memory function φ, as follows: s(t)i =
φ(xt−τ+1

i , . . . , xt−1
i , xti ), where 1 ≤ τ ≤ t determines the degree of memory. Thus,

τ = 1means nomemory (or conventional evolution),whereas τ = t means unlimited
trailingmemory. Each cell’s trait si ∈ ! is a state function of the series of states of the
cell i withmemory backward up to a specific value τ . In thememory implementations
run here, commences to act as soon as t reaches the τ time-step. Initially, i.e., t < τ ,
the automaton evolves in the conventional way. Later the original rule is applied
on the cell states s as: ϕ(. . . , s(t)i−1, s

(t)
i , s(t)i+1, . . .) → xt+1

i to get an evolution with
memory. Thus in cellular automata with memory, while the mapping ϕ remains
unaltered, historic memory of all past iterations is retained by featuring each cell as
a summary of its past states from φ. We can say that cells canalises memory to the
map ϕ [3].

Other research done by Nazim Fatés shown that the Game of Life is robust from
asynchronous version, for details see [13].
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Fig. 4 The Game of Life is a robust complex rule. The Game of Life is composed with a majority
memory function, starting with a random initial condition to 50% and running to 10,000 steps
(snapshots) in an evolution space of 400×400 cells. The memory function uses a range from τ =
2 to 5. The density history is followed to reach a periodic state or not
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2 The Game of Life and Its Connection in One Dimension

Rule 22 is the natural projection to one dimension and initially studied by McIntosh
in 1990 [23]. Rule 110 is proposed as LeftLife by Cook in 1999 [9].

Elementary cellular automaton rule 22 is one dimensional projection of the Game
of Life automaton(for details see [23]). Although the Rule 22’s global behaviour
does not show outstandingly complex dynamics, rule 22 is classified as a chaotic
rule (class 3) in the Wolfram’s classification [28].

Rule 22 can be seen as a natural projection to the Game of Life [6] given in the
next conditions [23]:

Birth: a dead cell xi at the time t will be born in t + 1 if there is just one live
neighbour.

Survival: an alive cell xi at the time t will survive in t + 1 if there are no live
neighbours

Death: an alive cell xi at the time t will be dead in t + 1 if there are just two or
one live neighbours, it is dead by overcrowding.

Such a relation covers conditions of the Game of Life. Nevertheless, from a quick
exploration in the one-dimensional dynamics, it does not exhibit complex behaviour.
Rule 22 is an elementary cellular automaton evolving in one dimension of order
|!| = 2 and neighbourhood radius r = 1. Thus the local ruleϕ is defined as follows:

ϕR22 =
{
1 if 100, 010, 001
0 if 111, 110, 101, 011, 000

. (1)

The local function ϕR22 has a probability of 37.5% to get states 1 in the next
generation and consequently a higher probability to get state 0 in the next generation.
Of course, it is the same fixed point value for the Game of Life.

Recently in [21] it was demonstrated that rule 22 is able to support complex
behaviour, including non-trivial travelling patterns, as gliders. Figure5 illustrates
the collisions between two fractals propagating in one dimension. The probability
to get this initial configuration is very slow because typical evolution is chaotic in
this rule. To reproduce the collisions between fractals emerging in rule 22 we need
the symbolic equation: e∗ − 11 − e11 − 11 − e∗, where the symbol ‘–’ means a con-
catenation operation, the periodic background (or ether) is determined by the string
11101110111011100000. Figure5a shows the original evolution on a ring of 1,164
cells where both fractals start at the center of the window and evolve during 1,049
generations. Here it is possible to distinguish that the composition of both fractals
preserves its structure yielding a reaction between multiple fractals. Another kind of
fractals and collisions can be explored in [21]. Figure5b shows the same evolution
but filtered, this technique permits to separate the mosaic with most frequency in the
evolution space and the patterns are more clear to see. Also, we can see that these
fractals evolve with two stationary particles that travel with small displacements
produced by perturbations when they collide with the fractal structures.
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Fig. 5 A non-typical
evolution of elementary
cellular automaton rule 22,
two fractals evolve and
collide on a periodic
background. a This initial
condition is determined by
the regular expression
e∗ − 11 − e11 − 11 − e∗ in a
ring of 1,164 cells evolving
in 1,049 steps. b The
evolution is the same a in (a)
but a filter is selected to
visualise non-trivial complex
patterns emerging in this
automaton [21]

(a)

(b)
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Fig. 6 Evolution of a
pentomino ‘I’ configuration
in the elementary cellular
automaton rule 110, running
in 5,000 steps. The periodic
background is filtered in one
colour for a better view of
gliders and collisions

Research in progress reports a number of interesting reactions however, a glider
gun is not discovered in this domain, moreover a glider gun in rule 22 with memory
is reported in [18]. Thus, phenotypically we can see that rule 22 has a connection
with the Game of Life.

In [9] Cook proposed that elementary cellular automaton rule 110 can be called
as LeftLife. However, the relation between the Game of Life and rule 110 is only
phenotypical because rule 110 is not tangential to the identity and it does not have
unstable fixed points that equilibrate stable fixed points. Rule 110 increases close to
double the probability to get states 1s in the next generation with respect to the Game
of Life. The local rule ϕ is defined as follows:
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ϕR110 =
{
1 if 110, 101, 011, 010, 001
0 if 111, 1000, 000

. (2)

Also, rule 110 evolves with a periodic background and not a stable state. Which
is interesting is that rule 110 has a glider gun and here it is possible to produce
extensible glider guns between a diversity of rule 110 objects [19, 20]. From random
initial conditions typically the attractors are dominated by gliders moving to the left
(E gliders3). On the other hand, if we start a small configuration hence the rule 110
evolves always to the left. In Fig.6 a pentomino ‘I’ is codified in the initial condition
and it evolves during 3,000 generations before reaching its periodic pattern moving
to the left, the frequency of gliders moving to the left is most of 80% and a barrier
to the right prevents any perturbation coming to the left.

3 Final Notes

The Game of Life without question is the most studied cellular automaton, explored
by a wider range and rich spectrum of researchers. The experts in Life constructions
design very large and complex patterns to reach some limits of the rule. The number
of complex patterns increases and a very specialized simulator is created to explore
these huge spaces, such as Golly (http://golly.sourceforge.net/) where a number of
sophisticated constructions have been designed. Golly is the most complete and
powerful simulator to run Life and other cellular automata. What is the limit? When
one of authors asked this question to Harold McIntosh in Puebla years ago, Harold
responded: well, the limit is the Ackermann function.

A small repository about the Game of Life is accessible from https://www.
comunidad.escom.ipn.mx/genaro/Cellular_Automata_Repository/Life.html.
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