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Abstract—Cellular automata have been a topic of great interest
in unconventional computation theory for its architecture: simple
but capable of producing complex structures with a dynamic
behavior and massive parallel computation. Collision-based com-
puting with multiple reactions is a way to explore such capacities.
Following this logic, a virtual collider was proposed as a way to
develop computers by using the elementary cellular automaton
rule 110. The main result in this paper is the computational
implementation of the virtual collider, capable of supporting the
execution of three simultaneous cyclotrons. The lateral cyclotrons
handle particles which are injected to the main collider to
perform a computation. Particles move until they reach a contact
point, where they trigger a series of chained reactions among
hundreds of thousands of cells. Using this program, we present
a configuration of the collider that simulates the execution of
the first nine transitions of a cyclic tag system using rule 110
particles, the largest simulation of this kind to date.

Index Terms—cellular automata, rule 110, cyclic tag system,
virtual collider, unconventional computing.

I. INTRODUCTION AND BASIC NOTATION

Cellular automata

The study of the dynamic operations of cellular automata

(CA) have become a significant area of mathematics and theo-

retical computation in the last years. CA provide a framework

for a class of dynamic discrete systems that give rise to

a complex and unpredictable behavior, emerging from local

and deterministic interactions between components acting in

parallel [1].

A CA is defined by the 4-tuple:

M := (d,Σ, N, φ)

Where:

• d ∈ Z
+ is the dimension of M . The cellular space of M

is Z
d, and all the vectors c ∈ Z

d are called cells.

• Σ is an alphabet of states of cardinality k, commonly

represented with the integers {0, 1, . . . , k− 1}. The con-

figuration of M is a function s : Zd → Σ that assigns a

state to each cell.

• N : Z
d → (Zd)n, with n ∈ Z

+, is a neighborhood

function for M . For any cell c ∈ Z
d, N(c) outputs the

cells c1, c2, . . . , cn ∈ Z
d that are part of the neighborhood

of c.
• φ : Σn → Σ is a function, called transition rule, that

determines the new state of a cell from the states of

the cells in its neighborhood. For any cell c ∈ Z
d

with neighborhood N(c) = (c1, c2, . . . , cn) at time ti,
φ(s(c1), s(c2), . . . , s(cn)) produces a new state for c at

time ti+1. This rule is applied synchronously among all

cells in M , producing a new global state for each step of

time [2].

An elementary cellular automaton (ECA) is a one-

dimensional (d = 1) CA that uses binary values for its cells

(Σ = {0, 1}) and a 3-cell local neighborhood (n = 3 and

N(i) = (i− 1, i, i+ 1) for i ∈ Z). With these characteristics,

there are 8 possible states for the neighborhood, and thus

28 different rules. If the outputs of an elementary rule are

ordered by the binary value given by its input, it is possible

to code the resulting states to give the rule a unique identifier.

For example, output states 0, 1, 1, 0, 1, 1, 1, 0, define the rule

(01101110)b, also called ECA rule 110.

The evolution space for the first iterations of this rule using

a random initial configuration for the cellular space is shown

in figure 1. For practical purposes, the cellular space of the CA

is considered large enough, and its border cells are processed

in a periodic manner.

Fig. 1: Classic evolution of ECA rule 110 from a random

initial configuration at 50%, evolving on a space of 1000 cells

through 500 generations. A filter is applied on the periodic

background for a better visualization of particle dynamics.

Rule 110

ECA rule 110 was proved to be capable of universal

computation by Cook [3]. He analyzed the evolution space of

rule 110, isolating the binary strings that were able to create

defined patterns, which he called particles. These particles

seemed to move through a periodic background, informally

named ether. The set of all the particles of rule 110 identified

by Cook is defined by:

Γ := {e,A,A2, A3, . . . , B, B̄, B̄2, B̄3, . . . , B̂, B̂2, B̂3, . . . ,

C1, C2, C3, D1, D2, E,E2, E3, . . . , Ē, F,

G,G2, G3, . . . , H, gun, gun2, gun3, . . .}
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Figure 2 shows some of the particles of rule 110, isolated

for better visualization of their shape and movement.

Fig. 2: Particles of rule 110.

For any two particles α, β ∈ Γ, the notation α−β describes

a concatenation of α with β. Furthermore, for particle α ∈ Γ
and a ∈ Z

+, we say that aα is a concatenation of particle α
with itself a times [4].

Any particle α ∈ Γ has a list ϕ0, ϕ1, . . . , ϕT−1 ∈ {0, 1}∗ of

unique representations, called phases of α. T ∈ Z
+ is called

the period of α. When applying rule 110 to a phase ϕi, with

i ∈ {0, . . . , T−1}, the resulting space will contain ϕi+1mod T ,

typically shifted a number of cells depending on α’s specific

horizontal displacement.

We introduce the notation for the phase of a particle as:

α(ω, fi 1)

Where:

• α ∈ Γ is a particle with period T and phases

ϕ0, ϕ1, . . . , ϕT−1.

• ω is an entry of the finite ordered list Ω =
(A1, B1, C1, . . . , H1, A2, B2, C2, . . . , H2, . . .). Ω repre-

sents sections of 4 phases of α, thus |Ω| = �T4 �. For

i ∈ {0, . . . , |Ω| − 1}, Ω(i) denotes the section of 4

phases ϕ4i, ϕ4i+1, ϕ4i+2 and ϕ4i+3 of α, if they exist.

Entries A1, B1, C1, . . . , H1 of Ω are commonly written

as A,B,C, . . . ,H , respectively, or omitted altogether if

|Ω| ≤ 8.

• fi 1, with i ∈ {1, 2, 3, 4}, is the ith phase of α at section

ω, given it exists.

In this manner, ether (e) has 4 different phases, which are

e(f1 1) = 11111000100110, e(f2 1) = 10001001101111,

e(f3 1) = 10011011111000 and e(f4 1) = 10111110001001.

J. Martı́nez et al. presented a compilation of the phases for

the particles in rule 110 in [5], as well as a thorough analysis

on the behavior of each individual particle in [6].

From now on, we will refer to e(f1 1) as simply e.

Cyclic tag systems

A cyclic tag system (CTS) is a computational model created

by Cook to show that ECA rule 110 is universal. The CTS is

itself a universal system, as it is capable of emulating m-

tag systems, another kind of system that can in turn emulate

Turing machines [3].

A CTS of cycle length k ∈ Z
+ is defined by the k-tuple:

C := (p0, . . . , pk−1)

Where p0, . . . , pk−1 ∈ {0, 1}∗ are called the productions of

C [7]. An instantaneous description (ID) of C is represented

by the tuple (v,m), where v ∈ {0, 1}∗ and m ∈ {0, . . . , k−1}.
We call m a phase of the ID.

A transition relation ⇒ in the set of the IDs is defined in the

following manner: Let (v,m), (v′,m′) ∈ {0, 1}∗×{0, . . . , k−
1}. Then:

(1v,m)⇒ (v′,m′) iff (m′ = m+ 1 mod k)

∧ (v′ = vpm),

(0v,m)⇒ (v′,m′) iff (m′ = m+ 1 mod k)

∧ (v′ = v)

A sequence of IDs (v0,m0), . . . , (vn,mn) of C is a com-

putation beginning in v ∈ {0, 1}∗ if and only if:

(v0,m0) = (v, 0)∧(vi,mi)⇒ (vi+1,mi+1) ∀i ∈ {0, . . . , n−1}
[8]

C is said to halt on tape v if its computation reaches the

empty word ε in a finite amount of transitions.

Figure 3 shows the first 20 transitions of the computa-

tions of a CTS with productions (1, 101), starting with the

initial tape 1. The resulting computation is (1, 0) ⇒ . . . ⇒
(1101111011, 0). It proves difficult to predict if in any moment

in the future the CTS will halt.

Fig. 3: First 20 transitions of the computation of a CTS with

productions (1, 101) starting with tape 1.

Symbolic collisions

In the 70s, Fredkin and Toffoli [9] proposed a model of

computation based in ballistic collisions between quanta of

information represented by abstract particles. Later, Margolus
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(a) Two particles
α+ and β−
with opposite
velocities move
towards a
collision point.

(b) A high veloc-
ity particle αF

moves towards a
low velocity par-
ticle αS .

(c) A particle α
moves towards a
stationary parti-
cle γ0.

Fig. 4: Beam routings for different scenarios of collisions

between two particles in an ECA.

[10] applied this concept to CA theory through the implemen-

tation of a neighborhood model that used ballistic collisions.

To represent a collision in an ECA, we use the notion of

idealized particles (with no energy or potential), which move

through a periodic background with either a positive, negative

or neutral lateral displacement.

When assuming periodic boundary conditions, the cellular

space of an ECA can be represented as a ring. Particles moving

through this space can be transmitted through the boundary

and interact indefinitely, resembling the operation of a virtual

cyclotron.

In order to characterize the interactions in ECA rule 110,

we will define a special notation for the collision of a two-

particle system. Let α, β, γ, γ1, . . . , γm ∈ Γ and m ∈ Z
+.

The notation (α⇔ β)→ (γ1, . . . , γm) indicates that α and β
collide to create the m ordered particles γ1, . . . , γm. We will

use ε to denote the absence of particles.

Collisions are classified as follows:

• Destruction: (α⇔ β)→ ε.
• Fusion: (α⇔ β)→ (γ).
• Interaction and production of new particles: (α⇔ β)→
(γ1, . . . , γm).

• Identity or solitonic collision: (α⇔ β)→ (α, β).
• Reflection or elastic collision: (α⇔ β)→ (β, α).

The description of the dynamics for collisions in a cyclotron

can be represented in an abstract diagram called a beam

routing. Figures 4a, 4b and 4c show the beam routings for

different scenarios of collisions between two particles towards

a collision point in a cyclotron:

• Two particles, α+ and β−, move in opposite directions

until they collide in the collision point (figure 4a).

• Two particles, αF and αS , move in the same direction,

and αF has a higher lateral displacement than αS . The

collision point marks the moment in which αF closes up

on αS (figure 4b).

• A particle α moves towards a neutral particle γ0. The

collision point is found on top of γ0 (figure 4c).

II. COMPUTABILITY IN RULE 110

If rule 110 is able to emulate a CTS, it follows that rule 110

is Turing-complete and thus universal. In this work, we will

focus on simulating a CTS with productions (1, 101) operating

on an initial tape 1.

The particles of rule 110 are used to build composite

structures that we will call particle packages. [4] and [11]

provided a detailed characterization of these structures. Each

one has its own functionality and interactions that will be

useful for the simulation of the CTS.

We will briefly describe each of the particle packages as

well as the construction for their first phases, applying the

same phase notation used for the elementary particles.

Package 4 A4

The package 4 A4 defines four trains of A4 particles,

changing periodically in phase. The three phases for this

package are used regularly, and thus are uniquely named

4 A4(F1), 4 A4(F2) and 4 A4(F3).

4 A4(F1) = A4(f1 1)− 27e−A4(f3 1)− 23e−A4(f2 1)

− 25e−A4(f1 1)

4 A4(F2) = A4(f2 1)− 27e−A4(f1 1)− 23e−A4(f3 1)

− 25e−A4(f2 1)

4 A4(F3) = A4(f3 1)− 27e−A4(f2 1)− 23e−A4(f1 1)

− 25e−A4(f3 1)

Packages 1Ele C2 and 0Ele C2

The package 1Ele C2 represents a 1 in the tape of the CTS,

whereas 0Ele C2 represents a 0.

1Ele C2(A, f1 1) = C2(A, f1 1)− 2e− C2(A, f1 1)− 2e

− C2(A, f1 1)− e− C2(B, f2 1)

0Ele C2(A, f1 1) = C2(A, f1 1)− 2e− C2(A, f1 1)− e

− C2(A, f4 1)− e− C2(A, f2 1)

Package 0Blo Ē.

The package 0Blo Ē represents a 0 in a CTS production

and generates the package 0Add Ē.

0Blo Ē(A, f1 1) = Ē(A, f1 1)− 2e− Ē(D, f1 1)

− Ē(G, f2 1)− Ē(A, f2 1)− 2e

− Ē(B, f1 1)− 2e− Ē(A, f1 1)

− e− Ē(D, f3 1)− 2e

− Ē(H, f1 1)− Ē(B, f4 1)

− Ē(D, f4 1)− e− Ē(E, f3 1)

− e− Ē(D, f3 1)

Packages 1BloP Ē and 1BloS Ē

Because of the asymmetric evolution of rule 110, it is nec-

essary to use two different packages to represent a 1 in a CTS

production: 1BloP Ē (primary package) and 1BloS Ē (stan-

dard package). Either package generates a package 1Add Ē.
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1BloP Ē(A, f1 1) = Ē(A, f1 1)− Ē(B, f3 1)− e

− Ē(B, f4 1)− Ē(D, f4 1)− e

− Ē(E, f3 1)− e− Ē(D, f3 1)

− Ē(G, f1 1)− 2e− Ē(B, f1 1)

− Ē(D, f4 1)− Ē(G, f2 1)− 2e

− Ē(H, f1 1)− 2e− Ē(G, f1 1)

1BloS Ē(A, f1 1) = Ē(A, f1 1)− 2e− Ē(D, f1 1)− e

− Ē(G, f2 1)− Ē(A, f2 1)− 2e

− Ē(B, f1 1)− 2e− Ē(A, f1 1)

− Ē(C, f1 1)− 2e− Ē(F, f2 1)

− Ē(A, f2 1)− Ē(C, f2 1)− 2e

− Ē(D, f1 1)− 2e− Ē(C, f1 1)

Package SepInit EĒ

The package SepInit EĒ acts as the leader component for

the interactions for the rest of the packages. It is essential to

separate sectors of data and to determine the incorporation

of data to the tape of the CTS by deciding whether the

interactions of the sector will add or remove data.

SepInit EĒ(A, f1 1) = E5(A, f1 1)− E2(D, f2 1)− 3e

− E4(A, f1 1)− e− Ē(G, f2 1)

− e− Ē(H, f2 1)− 2e

− Ē(A, f2 1)− Ē(H, f3 1)− e

− Ē(G, f3 1)

Packages 1Add Ē and 0Add Ē

The package 1Add Ē is generated by either 1BloP Ē or

1BloS Ē, whereas 0Add Ē is generated by 0Blo Ē.

1Add Ē(A, f1 1) = Ē(A, f1 1)− 7e− Ē(B, f4 1)

− 5e− Ē(C, f1 1)− 7e

− Ē(D, f4 1)

0Add Ē(A, f1 1) = Ē(A, f1 1)− 7e− Ē(B, f4 1)

− 6e− Ē(D, f3 1)− 6e

− Ē(E, f3 1)

III. DESCRIPTION OF THE SYSTEM

The complete system to simulate the CTS with productions

(1, 101) on an initial tape 1, can be divided in three main

components:

• A left section, composed of trains of A4 particles moving

to the right, controls the writing of values added to the

tape of the CTS.

• A central section, composed of a single particle 1Ele C2,

contains the initial value 1 of the tape.

• A right section, composed of sectors of Ē particles mov-

ing to the left, is in charge of processing data, producing

the necessary elements to add new values to the tape

depending on the values found at the moment. A sector

is composed of a leading package SepInit EĒ, followed

by a group of block packages Blo Ē that represent the

production of the CTS at a specific transition. Therefore,

the production list of the CTS must be coded as concate-

nated sectors in the right section. In order to simulate

the cycling of the production list, this concatenation is

carried out indefinitely. To activate the first data sector,

an activator particle A3 is placed at the beginning of the

right section.

The simulation of the CTS process the tape from right to

left in the following manner:

1) The SepInit EĒ that leads the first processing sector

of the right section, collides with the activator particle

A3 to enter activation mode.

2) When activated, a SepInit EĒ collides with a static

package from the central section, deleting it. This action

simulates the deletion of the leading value from the tape

of the CTS.

a) If the deleted static package is a 0Ele C2, all the

blocks Blo Ē in the sector will be destroyed. The

destruction of a data sector represents the action

of reading a value 0 from the tape, with which no

new value is added.

b) If the deleted static package is a 1Ele C2, the

blocks Blo Ē to its right will collapse one by one

to create addition packages Add Ē.

i) If the collapsing block is a 0Blo Ē, the result-

ing collision will create a 0Add Ē.

ii) If the collapsing block is either a 1BloP Ē or

a 1BloS Ē, the resulting collision will create

a 1Add Ē. If a sector starts with a value 1, a

primary block must be used. For additional 1
values, the standard block is used.

3) As a result of the collisions between packages, indi-

vidual Ē particles will be generated as residues. If the

system is correctly synchronized in phase and distance,

this residues will cross paths with other particles without

altering their structure, effectively acting as solitons.

4) The addition packages generated in a sector will collide

with the train of 4 A4 particles from the left section,

producing either a 0Ele C2 from a 0Add Ē, or a

1Ele C2 from a 1Add Ē. This collision represents the

writing of a new value 0 or 1, respectively, at the end

of the CTS tape.

5) Finally, after either collapsing or destroying an entire

sector, a train of three A particles will be generated. This

train will serve as an activator for the SepInit EĒ of

the next sector.

In 2017, J. Martı́nez et al. [4] presented a system on a

space of 56,240 cells, capable of simulating the CTS up to

five transitions. This research will propose an optimization of

the original system, reducing the the size of the cellular space

and being able to process up to nine transitions of the CTS.

IV. CYCLOTRON BEAM ROUTING AND VIRTUAL COLLIDER

We can represent collisions in an ECA as transitions be-

tween beam routings, which is useful for designing a model for
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Fig. 5: Transition diagram for the operations of the CTS simulator.

the operations in the computation of the CTS. Figure 5 shows

the transition diagram for the simulation, originally presented

in [4].

It is important to notice that all of the particle packages

that compose a section possess the same horizontal velocity.

Strictly speaking, the right section has a particle A3 that

doesn’t match in velocity with the rest of the section, but as

it interacts with the first SepInit EĒ right away in order to

activate it without changing the later’s velocity, it will not be

taken into account. As such, each section can move freely as

long as it doesn’t interact with any other section. This behavior

makes it possible to isolate each section in an individual space,

with all of its particles moving indefinitely in a cyclotron. The

three independent cyclotrons may then be combined into one

single space, a super-cyclotron. The spaces interact through

contact points, carefully synchronized in order to transmit

particles in resemblance of a classical virtual collider.

• The left ring injects positive 4A4 particle trains to the

central ring.

• The right ring injects negative E and Ē particle sectors

to the central ring.

• The central ring possesses the initial value to process, as

well as the main space for all the collisions in the system

after injection from both rings.

The configuration of the collision system is described by

the 7-tuple:

(Sl, Sc, Sr, il, ir, icl, icr)

Where:

• Sl ∈ Σ+ is the initial configuration for the left ring.

• Sc ∈ Σ+ is the initial configuration for the central ring.

• Sr ∈ Σ+ is the initial configuration for the right ring.

• il ∈ {0, . . . , |Sl| − 1} is the contact point from the left

ring to the central ring.

• ir ∈ {0, . . . , |Sr| − 1} is the contact point from the right

ring to the central ring.

• icl, icr ∈ {0, . . . , |Sc| − 1} is the contact point from the

central ring to the left and right rings, respectively.

For each contact point i ∈ {il, ir, icl, icr} corresponding to

a ring with initial configuration Si, the exchange of particles

is carried out between cells i and i − 1 mod |Si|. We define

the neighborhoods for the contact points as:

N(ir) = (icr − 1 mod |Sc|, ir, ir + 1 mod |Sr|)
N(icr) = (ir − 1 mod |Sr|, icr, icr + 1 mod |Sc|)
N(il) = (icl − 1 mod |Sc|, il, il + 1 mod |Sl|)
N(icl) = (il − 1 mod |Sl|, icl, icl + 1 mod |Sc|)

For convenience, we also assume that icl �= icr. Figure 6

shows the operation of the virtual collider.

Fig. 6: Rule 110 particle collider diagram.

V. PROGRAM IMPLEMENTATION

In this research, a C++ program was implemented for the

visualization of ECA cyclotrons, as well as for the execution

of a virtual collider with the particles of rule 110. This project

is named CAVCollider.

CAVCollider consists of two main modules. The first mod-

ule is a CA visualizer: users select a rule for the ECA and

5
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(a) Grid representation of the space for the se-
lected configuration of ECA rule 110. A filter is
applied for better visualization.

(b) Ring representation of the space for the se-
lected configuration of ECA rule 110 generated
in real time, in 2D and 3D mode, respectively.

Fig. 7: Screenshots of the CAVCollider module for elementary

CA visualization.

set its initial configuration through regular expressions. The

program then shows the CA in a limited grid. Alternatively,

the program can process the CA in real time as a ring that

simulates the behavior of a classic cyclotron. If the CA is

using rule 110, the program also filters out the mosaics so

as to better visualize the particles moving alongside the ring.

Figures 7a and 7b show the functionality of this module.

Fig. 8: Screenshot of the CAVCollider module for rule 110

particle collider.

The second module of CAVCollider is a virtual collider:

users set the initial configurations for each of the 3 rings of

the system, using elementary rule 110, as well as the position

of the contact points for the transmission of particles. The

program then executes the corresponding system, filtering the

rule 110 mosaics it finds. The collider can be set to turn off

the transmission of particles via contact points or the execution

of any of the rings, if the user so desires. Figure 8 show the

functionality of this module.

The implementation for CAVCollider is contained in

the following GitHub project: https://github.com/olbrlvalbt/

CAVCollider. The project contains a directory, Installer, where

a ZIP file can be found. Download, extract and execute this

file to install the program. Windows 10 at 64 bits and at least

8GB of memory are recommended.

VI. DESCRIPTION OF COLLISIONS

To understand the operation of the CTS simulator, we will

analyze the interactions between particle packages in detail.

Activation of a processing sector

A sector needs to be activated in order to process values

from the tape. To achieve this, a leader package SepInit EĒ
must collide with one of the two activator particles A3 and

3 A. Figures 9a and 9b show these interactions in an isolated

space. The routings describing these processes are:

(A3 ⇔ SepInit EĒ)→ (SepInit EĒA),

(3 A⇔ SepInit EĒ)→ (SepInit EĒA)

(a) Activation by A3. (b) Activation by 3 A.

Fig. 9: Activation of a processing sector.

We will later see that the difference between activators

originates from the generation of destroyer and collapser

particles.

Reading from the tape

An activated leader particle SepInit EĒA interacts with

element packages Ele C2, simulating the reading and deletion

of a value from the tape.

Reading a zero: If the activated leader collides with a

0Ele C2, the sector enters destruction mode, preventing the

creation of tape values through the generation of a destroyer

particle A3. Two soliton particles Ē are generated as a result

of the collision. Figure 10a shows this interaction. The routing

that describes this process is:

(0Ele C2 ⇔ SepInit EĒA)→ (Ē, Ē, A3)

6
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(a) Reading a zero
from a 0Ele C2.

(b) Reading a one
from a 1Ele C2.

Fig. 10: Reading of values from the tape.

Reading a one: If the activated leader collides with a

1Ele C2, the sector enters collapse mode, transforming each

of its blocks Blo Ē into addition packages Add Ē through

the generation of a collapser particle 3 A. Two soliton particles

Ē are generated as a result of the collision. Figure 10b shows

this interaction. The routing that describes this process is:

(1Ele C2 ⇔ SepInit EĒA)→ (Ē, Ē, 3 A)

Destruction of blocks

When a sector enters destruction mode, all of its blocks will

be eliminated. After this, the only remaining particle will be

the original destroyer A3, which will serve as activator for the

next sector.

Destruction of a zero block: The routing that describes the

destruction of a block 0Blo Ē is:

(A3 ⇔ 0Blo Ē)→ (A3)

Figure 11a shows this interaction.

Destruction of a one block: The routing that describes the

destruction of a primary block 1BloP Ē is:

(A3 ⇔ 1BloP Ē)→ (A3)

Figure 11b shows this interaction. The process is identical

for the destruction of a standard block 1BloS Ē.

Collapsing of blocks

When a sector enters collapse mode, all of its blocks will

be transformed into addition packages. After this, the only

remaining particle will be the original collapser 3 A, which

will serve as activator for the next sector.

(a) Destruction of a
0Blo Ē.

(b) Destruction of a
1BloP Ē.

Fig. 11: Destruction of block packages.

(a) Collapse of a 0Blo Ē. (b) Collapse of a 1BloP Ē.

Fig. 12: Collapse of block packages.

Collapse of a zero: The routing that describes the collapse

of a block 0Blo Ē is:

(3 A⇔ 0Blo Ē)→ (0Add Ē, 3 A)

Figure 12a shows this interaction.

Collapse of a one: The routing that describes the collapse

of a primary block 1BloP Ē is:

(3 A⇔ 1BloP Ē)→ (1Add Ē, 3 A)

Figure 12b shows this interaction. The process is identical

for the collapse of a standard block 1BloS Ē.

Solitonic interactions

Many particles must act as solitons in specific cases in order

to keep the synchronization of the system.
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(a) Addition package
0Add Ē as soliton.

(b) Residual particles Ē as
solitons.

Fig. 13: Solitonic interactions.

Addition packages as solitons: Occasionally, addition pack-

ages Add Ē need to interact solitonically with element pack-

ages Ele C2 so as to not distort values that have been

previously added to the tape. The routings are described with

the routings:

(iEle C2 ⇔ jAdd Ē)→ (iEle C2, jAdd Ē)

Where i, j ∈ {0, 1}. Figure 13a shows the solitonic inter-

action of a package 0Add Ē with an element 1Ele C2.

Residual solitons: Residual Ē particles generated from the

interactions of leader and block packages, must cross paths

with trains 4 A4 without distorting each other. Figure 13b

shows this interaction. The reaction is described with the

following routing:

(4 A4 ⇔ Ē)→ (4 A4, Ē)

Writing to the tape

The result of collapsing blocks Blo Ē is the production of

addition packages Add Ē. To transform these packages into

tape values (element packages Ele C2), a collision with a

particle train 4 A4 must happen.

Writing a zero to the tape: The routing describing the

writing of a zero to the tape is:

(4 A4 ⇔ 0Add Ē)→ (0Ele C2)

Figure 14a shows this interaction.

Writing a one to the tape: The routing describing the

writing of a one to the tape is:

(4 A4 ⇔ 1Add Ē)→ (1Ele C2)

Figure 14b shows this interaction.

(a) Writing a zero from a
0Add Ē.

(b) Writing a one from a
1Add Ē.

Fig. 14: Writing of values to the tape.

VII. SIMULATION OF THE CTS

The configuration of the collider for the simulation of the

CTS is:

Sl = 4 A4(F3)− 87e− 4 A4(F2)− 87e

− 4 A4(F1)− 87e− 4 A4(F3)− 173e

− 4 A4(F2)− 87e− 4 A4(F1)− 87e

− 4 A4(F3)− 87e− 4 A4(F2)− 389e

− 4 A4(F1)− 87e− 4 A4(F3)− 87e

− 4 A4(F2)− 87e− 4 A4(F1)− 87e

− 4 A4(F3)− 86e;

Sc = 1800e− 1880e− 1Ele C2(A, f1 1)− 752e;

Sr = A3(f1 1)− SepInit EĒ(C, f3 1)

− 1BloP Ē(C, f4 1)− SepInit EĒ(C, f3 1)

− 1BloP Ē(C, f4 1)− 0Blo Ē(C, f4 1)

− 1BloS Ē(A, f4 1)− SepInit EĒ(E, f3 1)

− 1BloP Ē(F, f1 1)− SepInit EĒ(E, f3 1)

− 1BloP Ē(F, f1 1)− 0Blo Ē(F, f1 1)

− 1BloS Ē(C, f4 1)− SepInit EĒ(F, f1 1)

− 1BloP Ē(F, f3 1)− SepInit EĒ(F, f1 1)

− 1BloP Ē(F, f3 1)− 0Blo Ē(F, f3 1)

− 1BloS Ē(D, f2 1)− SepInit EĒ(H, f2 1)

− 1BloP Ē(E, f2 1)− SepInit EĒ(E, f1 1)

− 1BloP Ē(E, f2 1)− 0Blo Ē(E, f2 1)

− 1BloS Ē(C, f2 1)− SepInit EĒ(G, f2 1)

− 1BloP Ē(A, f3 1);

il = 0; ir = 0; icl = 25200; icr = 0

Figure 16 shows the state of imminent collision for the

execution of this system. Each ring processes a specific cellular

space: the left section uses 35,912 cells; the right section,
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Fig. 15: Extension of the simulation of the CTS with productions (1, 101) on initial tape 1 to nine transitions, the largest

simulation of this system to date. The grid shows iterations 38,500 - 90,500 in a space of 46,992 cells. For each reading

operation in the system, a snippet of its equivalent state in the cyclotron collider is shown.
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Fig. 16: State of imminent collision of the virtual collider

simulating the CTS.

10,326; and the central section, 62,186. Thus, the total space

for the simulator contains 108,424 cells. It is worth mentioning

that the main collider consists mainly of ether in order to

accomodate the particles that will be injected from the other

two rings, resulting in a huge, mostly empty cellular space

that otherwise would be the smallest of the three.

The simulation produces the transitions 1 ⇒ 1 ⇒ 101 ⇒
011⇒ 11⇒ 11⇒ 1101⇒ 1011⇒ 011101⇒ 11101 of the

CTS. Figure 15 shows a grid that skips the process of particle

injection into the main cyclotron, presenting the moment of

imminent collision at iteration 38,500. The grid contains the

following 52,000 iterations of the system, as well as snippets

of the equivalent states in the cyclotron collider for imminent

reading operations. 1

When skipping particle injection, the simulation is able to

run in a space of only 46,992 cells to execute nine transitions

of the CTS, a significant improvement over the previous

implementation in [4], which used 56,240 cells to execute up

to five transitions of the CTS.

VIII. CONCLUSION

Having created a program for the codification and execution

of a one-dimensional binary cellular automaton virtual collider

of rule 110 particles, we were able to implement a CTS simula-

tor by synchronizing two cyclotrons that inject particles into a

main collider. This opens interesting questions and challenges,

such as implementing other CTS functions and other kinds of

machines. A future projection for an n-dimensional collider

model would also be worth developing, as it would be able to

handle a bigger universe of possibilities.

1For the best experience on visualizing the execution of the
simulation, we recommend visiting https://drive.google.com/drive/folders/
1TAsoHzuiMmVdTJFkZrcci21N9X-Ju7gA?usp=sharing, a directory contain-
ing a video that shows the collider in action with real-time labeling of the state
of the particles that describe the CTS tape, as well as high quality versions of
all the figures in this work. Please contact olbrlvalbt@gmail.com for inquiries
on this matter.
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