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We propose a scheme to simulate Fredkin gates in a one-dimensional
cellular automaton with memory by collision of particles, which is a
moving pattern in this cellular space. Operations by collisions are con-
fined in a black box with ballistic interaction, solitons and other colli-
sions. We made a systematic analysis of binary collisions, i.e., collisions
of two particles with different phases. They are used for handling these
particles and obtaining the final outputs.
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1 PRELIMINARIES

In the study of universal cellular automata (CA) — similar to the problem
of small universal Turing machines — a number of parameters are reduced
constantly: the number of states, the neighbourhood radius, the size of a
configuration, and the dimension. The present elementary CA with mem-
ory (ECAM) gives a framework for implementing Fredkin gates based on a
one-dimensional two-state CA having the neighborhood of radius 1. There,
only one kind of glider is used to implement logical operations.
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On one-dimensional universal CA, there exist a number of relevant and
interesting reductions [23].∗ Let (s, r ) denote the order of a CA, where s is
the number of states, and r is the neighborhood radius. Smith III proved in
1971 [25] that a one-dimensional CA of order (18, 1) is able to simulate a
universal Turing machine. Albert and Culik II in 1987 [1] showed another
universal CA of (14, 1) with a totalistic local function. Later, Lindgren and
Nordahl in 1990 [10] have reduced this order to (7, 1). All of these CAs
simulate a universal Turing machine, and their characteristic is that the spatial
constructions were done by the interaction of signals not by the collisions of
gliders. In 2004 Cook proved that ECA rule 110 (order (2,1)) is universal,
where collisions of hundred of gliders are used to control a cyclic tag system
[6, 30]. As for reversible CAs, a one-dimensional universal reversible CA of
order (24, 1/2) controlled by signals was reported by Morita in 2011 [22].
In this paper, we research a complex ECAM rule φR22maj :4 (discovered

in [11]). This automaton is able to simulate computable devices, such as:
elastic collisions, solitons, and logic gates. Also, we present a proposal to
simulate Fredkin gates in one dimension using this automaton. This ECAM
is a derivative of the ECA rule 22 that is the projection of the Game of Life in
one dimension [19]. The ECAM rule φR22maj :4 uses just one kind of particle
(and its reflection) to develop computable devices.
This paper is organized as follows. Section two presents basic concepts.

Section three offers a brief discussion of ECA rule 22. Section four discusses
ECAM rule φR22maj :4 including its dynamics, basic gates, and the proposal of
Fredkin gates in one dimension. Section five displays conclusions and future
works.

2 ONE-DIMENSIONAL CELLULAR AUTOMATA

2.1 Basic notation
One-dimensional CA can be represented as a tuple as follows: < ",ϕ,

µ, c0 >. The system evolve on an array of cells xi , where i ∈ Z (integer set)
and each cell takes a value from the finite alphabet ", thus xi ∈ ". A finite
sequence of cells {xi} represents a global configuration c, such that c ∈ "∗.
This way, the set of finite configurations of length n is represented as "n .
Cell states in a configuration c(t) are updated at the next configuration

c(t + 1) simultaneously by a local function as:

ϕ(xti−r , . . . , x
t
i , . . . , x

t
i+r ) = xt+1i . (1)

∗ Complex Cellular Automata Repository http://uncomp.uwe.ac.uk/genaro/Complex CA repository.
html
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Thus the local function determines the relation ϕ : "µ → ", where µ repre-
sents the neighbourhood of ϕ with 2r + 1 neighbours, and r ∈ Z+. So, the
set of states of neighbour cells is"µ, and the space of evolution rules is""µ .
ECAs are defined for the parameters |"| = 2, and r = 1 [29].
An evolution is represented by a sequence of finite configurations {ct }

given by the global mapping,$ : "n → "n . Thus the global relation is given
as the function between configurations $(ct ) = ct+1.

2.2 Cellular automata with memory
Conventional CA are ahistoric (memoryless): i.e., the new state of a cell
depends on the neighbourhood state solely at the preceding time step of ϕ. A
CA with memory (CAM) can be considered as an extension of the standard
framework of CA where every cell xi is allowed to remember some period of
its previous evolution. CAMs were introduced by Sanz and condensed basi-
cally in a book exploring an ample kind of memories on different kinds of
CAs [24].
When using the memory we need to specify a kind of memory function φ

as follows:

φ(xt−τ
i , . . . , xt−1i , xti ) = si . (2)

The parameter τ < t specifies the degree of memory backwards, and the state
si ∈ " is determined by the function φ of the series of states xi in the memory
up to the time step t . To make an evolution step we apply the original rule as:

ϕ(sti−r , . . . , s
t
i , . . . , s

t
i+r ) = xt+1i . (3)

The main feature in CAM is that the mapping ϕ remains unaltered, while
historic memory of all the past iterations is retained by featuring each cell
as a summary of its past states by φ. This way, cells canalise memory to the
map ϕ.
As an example, we can consider memory function φ as amajority memory

φmaj , where in case of a tie we will take the last value xi . In the case of three
variables, the function φmaj represents the classic majority function [20] as
follows:

φmaj (a, b, c) = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a). (4)

Note that memory is a simple function added to a CA. Particularly, an ample
and systematic analysis on ECAM with majority, minority, and parity mem-
ories was done in [11].
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3 ELEMENTARY CELLULAR AUTOMATON RULE 22

ECA rule 22 is a projection in one dimension of the famous two-dimensional
CA Conway’s Game of Life (for details see [19]). Although its global
behaviour does not display much information to deduce some complex
dynamics, rule 22 is classified as a chaotic rule (class III) in the Wolfram’s
classification [29, 30].
Rule 22 can be stated as a relation similar to the Game of Life [4] given in

the next conditions [19]:

I. Born: a dead cell xi at the time t will be born in t + 1 if there is just
one live neighbour.

II. Survival: an alive cell xi at the time t will survive in t + 1 if there is
not live neighbours.

III. Dead by overcrowding: an alive cell xi at the time t will be dead in
t + 1 if there is just two or one live neighbours.

Such a relation covers each condition of the Game of Life. Nevertheless,
from a quick exploration in the one-dimensional dynamics, it does not exhibit
complex behaviour. Figure 1 shows classic dynamics in ECA rule 22 begin-
ning with a cell in state one and a random initial condition.
Rule 22 is an ECA evolving in one dimension of order |"| = 2 and neigh-

bourhood radius r = 1. Thus the local rule ϕ is defined as follows:

ϕR22 =
{
1 if 100, 010, 001
0 if 111, 110, 101, 011, 000 . (5)

(a) (b)

FIGURE 1
Classic dynamics in ECA rule 22 from (a) the configuration with only one cell in state 1, and (b)
a random configuration with the ratio of 50% of state 1, on a ring of 323 cells to 300 generations.
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gR

gL

FIGURE 2
gL and gR particles evolving in φR22maj :4.

The local function ϕR22 has a probability of 37.5% to get states 1 in the next
generation and consequently a higher probability to get state 0 in the next
generation. Of course, it is the same fixed point value for the Game of Life
[18].

4 ELEMENTARY CELLULAR AUTOMATONWITH MEMORY
RULE φR22MAJ:4

In [11, 16] ECA rule 22 with memory is identified as a ‘strong’ class into
ECAM classification. ECAM rule φR22maj :4 is defined by the ECA rule 22
(R22), the majority memory (maj) and degree of memory backward τ =
4. This way, to represent functions with memory and a ECA is as follows:
φECAm:τ . Such that ECA represents the decimal notation of a specific rule, m
is the kind of memory, and τ the degree of memory backward.
The main characteristic is that rule φR22maj :4 has only one kind of particle

(and its reflection) traveling on its evolution space, as is illustrated in Fig-
ure 2. The set of particles GφR22maj :4 = {gL , gR} are defined in a perfect square
volume of 11× 11 cells, its properties are described in the Table 1.
Figure 3 displays a typical evolution from a random initial condition in

ECAM φR22maj :4. In this evolution, we can see how non-trivial patterns travel

particle period shift velocity mass

gR 11 2 2/11 38
gL 11 −2 −2/11 38

TABLE 1
Properties of particles of ECAM φR22maj :4.
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FIGURE 3
Typical dynamics of φR22maj :4 from a random configuration with the ratio of 37% on a ring of
968 cells for 1274 generations. Filter and a selection of colors are used to improve the view of
particles.

and interact by collisions. Also, collisions continue for a large number of gen-
erations. In this case the evolution lasts than 1000 steps, and their reactions
do not become stationary.
We will start to design constructions based on collisions of particles. Ini-

tially, we have done a systematic analysis of binary collisions that is given
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(a) (b) (c) (d)

FIGURE 4
Toffoli’s notation for basic ballistic collision with particles [28].

at the appendix. In the appendix we have 44 different binary reactions that
offer an attractive number of possibilities for design devices, as computable
functions, nano-devices, or collision theory in φR22maj :4.

4.1 Ballistic collisions
Fredkin thought that two Boolean states were independently conserved by
the logic gates with the intention that this could be represented as balls or
atoms shall preserve their identity through of collisions. Thus Fredkin came
up the Billiard-Ball Model of Computation consisting of elastic balls and flat
mirrors [28]. Later Margolus developed a CA to implement the billiard-ball
model, such CA is a block CA (BCA) which shows universal computing by
collisions of soft spheres simulating a Fredkin gate in [13] and as crystalline
computation in [14].
Ballistic collisions of particles permit to represent functions of two argu-

ments (general signal-interaction scheme is conceptualized in Figure 4a), as
follows:

1. f (u, v) is a product of one collision (Figure 4b);
2. fi (u, v) (→ (u, v) identity (Figure 4c);
3. fr (u, v) (→ (v, u) reflection (Figure 4d);

where Figure 4a represents a result without preserving some identity of u and
v, while f (in Figure 4b) displays the general scheme where two arguments
are preserved.
ECAM φR22maj :4 can reproduce ballistic collisions and preserve them

given a good synchronisation. Figure 5 simulates identity collisions. All colli-
sions preserve a reaction like soliton fixing distances between these particles
or changing the number and position of them and they are preserved forever.
Computing with solitons was explored amply by Steiglitz in [9, 27], a com-
putation to implement a carry-ripple adder [26] can be developed in φR22maj :4
by solitonic reactions.
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FIGURE 5
Solitonic collisions in ECAM φR22maj :4. 14 particles are synchronised to simulate the function
identity fi (u, v) (→ (u, v) from different intervals. Solitons are preserved forever.

Figure 6 simulates elastic collisions fr (u, v) (→ (v, u) with a pair of parti-
cles. This way, a pair of gliders reflect identically during all reactions. These
elastic collisions are robust on any change of phase, position or number of
them; 13 pair of particles in different positions preserve the elastic collisions
forever.
Ballistic ball reactions are interaction gates. The interaction gate is a func-

tion with two inputs and four possible outputs (Figure 7a), this one has its
inverse (Figure 7b) to return at the original inputs, it is reversible computa-
tion [8].

4.2 Fredkin gate
An schematic diagram and implementation to get a Fredkin gate in one
dimension is proposed in this section.
Typically, two-dimensional CAs were studied to simulate Fredkin gates

[8], rotatory elements [21], and reversible computing in general. In this case,
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FIGURE 6
Ballistic collisions in ECAM φR22maj :4. 13 pairs of particles are synchronised to simulate the
function reflection fr (u, v) (→ (v, u) from different intervals. Reflections are preserved forever.

(a) (b) (c)

FIGURE 7
With ballistic collisions we can handle an (a) interaction gate, (b) its inverse, and (c) its billiard
ball model realization.



334 GENARO J. MARTÍNEZ AND KENICHI MORITA

FIGURE 8
Physical computing device with non-linear interaction from several signals (original conceptu-
alization by Fredkin and Toffoli in [7]).

(a) (b) (c)

FIGURE 9
Fredkin gate. (a) Scheme of the gate, (b) operation for the control value 1, (c) operation for the
control value 0.

we use the ECAM φR22maj :4 to simulate Fredkin gates in one dimension. For
this implementation we need to adjust the timing with additional collisions
of localizations that can be confined to a dark box. The physical computing
device illustrated in Figure 8 (presented originally in [7]) represents a con-
servative computation with multiple inputs and the same number of outputs.
So, precisely we will exploit this feature to adjust a scheme where reversible
computing could be manipulated in an ECAM as an unconventional comput-
ing paradigm.
A conservative logic gate is a Boolean function that is invertible and pre-

serves signals [8]. Fredkin gate is a classical conservative logic gate. The
gate realises the transformation (c, p, q) (→ (c, cp + c̄q, cq + c̄ p), where
(c, p, q) ∈ {0, 1}3. Schematic functioning of Fredkin gate is shown in Fig-
ure 9 and the truth table is in Table 2.
Fredkin gate is universal because one can implement a functionally com-

plete set of logical functions with this gate (Figure 10). Other gates imple-
mented with Fredkin gate are shown below:

! c = u, p = v, q = 1 (or c = u, p = 1, q = v) yields the IMPLIES gate
y = u → v (z = u → v).! c = u, p = 0, q = v (or c = u, p = v, q = 0) yields the NOT IMPLIES
gate y = (v → u) (z = (v → u)) [8]
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c p q x y z

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 → 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

TABLE 2
Truth table of a Fredkin gate.

4.3 Basic collisions
To simulate a Fredkin gate in a non-invertible ECAM φR22maj :4, we will take
a set of basic collisions to preserve the reactions and the persistence of data,
these basic collisions have a specific task and actions which are specified as
follows.! A mirror might reflect a mobile localisation, but the mirror should be

deleted.! A doubler might copy a value into two.! A soliton crosses two mobile localisations preserving its identity with a
small change of phase.! A splitter separate two mobile localisations traveling together in oppo-
site directions.! A flag is a mobile localisation that will be activated from the initial
condition depending on an input value given.! A displacer might move forward a mobile localisation.

Fredkin gates implemented in non-invertible systems were proposed and
simulated by Adamatzky in a non-linear medium as an oregonator model of
Belousov-Zhabotinsky [3].

4.4 Fredkin gates in one dimension
Figure 11 displays the schematic diagram proposed to simulate Fredkin gates
in ECAM rule φR22maj :4. There are three inputs (c, p, q) and three outputs
(x, y, z). During the computation auxiliary gliders are generated. They are
deleted before reaching outputs. Gliders travel in two directions in a 1D chain
of cells, they can be reused only when crossing periodic boundaries or via
combined collisions. We use two gliders as flags, travelling from the left ‘L f ’
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(a)

(b) (c)

(d) (e)

(f) (g)

FIGURE 10
Realisation of Boolean functions using Fredkin gate. (a) Fredkin gate, (b) NOT gate, (c) FANOUT
gate, (d-e) OR gate, and (f-g) AND gate [8].

and from the right ‘R f ’. Flags are activated depending on initial values for c
or q as follows:

If c = 0 then R f = 1,
If q = 0 then L f = 1,
In any other case L and R = 0.
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p cq

mirror

mirror

c

c

~cq

c

~cp

cq

cp

c

z=~cp+cq

p cq

z yc=x

cp

~cp

y=~cq+cp

Lf Rf

042 031 030 035 0005

FIGURE 11
A scheme of Fredkin gate implementation in ECAM rule φR22maj :4 via glider collisions.

Mirrors M are defined as follows:

If c = p = q = 1 then M = 2,
If c = p = 1 then M = 2,
If c = q = 1 then M = 1,
If p = 1 then M = 1,
In any other case M = 0.

Distances between gliders are fixed as positive integers determined for
a number of cells in the state ‘0’, as 0n

⌢ ∀ n ≥ 0. During the computation
we split gliders when two gliders travel together, the split gliders travel in
opposite directions. We use two gliders as mirrors to change the direction of
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cpq x yz L f R f M

111 111 0 0 2
110 110 1 0 2
101 101 0 0 1
100 100 1 0 0
011 011 0 1 0
010 001 1 1 1
001 010 0 1 0

TABLE 3
Following the scheme in Figure 11 we specify a
sequence of collisions that are controlled with flag glid-
ers (L f , R f ) and mirrors (M) glider.

(a) (b)

FIGURE 12
Fredkin gate in ECAM rule φR22maj :4. (a) INPUT c = 1, p = 1, q = 1, OUTPUT x = 1, y =
1, z = 1, (b) INPUT c = 1, p = 0, q = 1, OUTPUT x = 1, y = 0, z = 1.
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(a) (b)

FIGURE 13
Fredkin gate in ECAM rule φR22maj :4. (a) INPUT c = 1, p = 1, q = 0, OUTPUT x = 1, y =
1, z = 0, (b) INPUT c = 1, p = 0, q = 0, OUTPUT x = 1, y = 0, z = 0.

an argument movement. We use displacer to move an output glider and adjust
its distance with respect to other.
Table 3 shows values of inputs, outputs, flags, and mirrors. First column

represents INPUTS, the second column OUTPUTS, third column are values of
a flag activated in the left side, fourth column are values of the flag activated
in the right side, and the last column shows the number of necessary mirrors.
Space-time configurations of ECAM rule φR22maj :4 implementing Fredkin

gate for all non-zero combinations of inputs are shown in Figures 12–15.
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(a) (b)

FIGURE 14
Fredkin gate in ECAM rule φR22maj :4. (a) INPUT c = 0, p = 1, q = 1, OUTPUT x = 0, y =
1, z = 1, (b) INPUT c = 0, p = 0, q = 1, OUTPUT x = 0, y = 1, z = 0.

A way to connect more Fredkin gates in two dimensions to implement
more complex computations is shown in Figure 16 that uses an array of these
physical computing devices.

5 FINAL REMARKS

We have proposed a scheme to simulate Fredkin gates in one dimension
in ECAM rule φR22maj :4. But, although this can be confined in a physical
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FIGURE 15
Fredkin gate in ECAM rule φR22maj :4. INPUT c = 0, p = 1, q = 0, OUTPUT x = 0, y = 0,
z = 1.

F F F F F F

F F F F F

F F F F F F

F F F F F

F F F F F F

FIGURE 16
Cascaded Fredkin gates (It is a modification of Fredkin array proposed in [15]).
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computing device several limitations should be improved: avoid the use of
mirrors and the use of flags. An option is that they could be manipulated into
in a ring (or virtual CA collider [12, 17]).
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A APPENDIX – BINARY COLLISIONS IN φR22MAJ:4

FIGURE 17
Binary collisions in Rule 22 with memory.
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FIGURE 18
Binary collisions in Rule 22 with memory.
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FIGURE 19
Binary collisions in Rule 22 with memory.


