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Abstract. Patterns, originating from different sources of per-
turbations, propagating in a precipitating chemical medium do
usually compete for the space. They sub-divide the medium onto
the regions unique for an initial configuration of disturbances.
This sub-division can be expressed in terms of computation.
We adopt an analogy between precipitating chemical media and
semi-totalistic binary two-dimensional cellular automata, with
cell-state transition rule B2/S2 . . . 8. We demonstrate how to
implement basic logic and arithmetical operations (computabil-
ity) by patterns propagating in geometrically constrained Life
rule B2/S2 . . . 8 medium.

1 Introduction

Non-standard computation deals with implementation of programmable
processing of information by unorthodox ways (e.g. computing with trav-
eling localizations [2]) and in novel, or unusual, materials, (e.g. chem-
ical reaction-diffusion media [4]). All non-standard computational sys-
tems can be classified as geometrically-constrained (fixed, stationary,
architecure, e.g. wires, gates) and architecureles (collision-based, or ’free
space’4 [1]) computers.

4 ‘Free space computing’ is a term coined by Jonathan Mills.



Conway’s Game of Life [11] is the best-known example of a universal
collision-based computer [8, 2]. Its universality [18] can be proved and
demonstrated by many ways, either simple functionally complete set of
logical functions, as in [8], or via construction of large and complicated
simulators of Turing machine [9, 25] and register machine [8].

The Life, and Life-like rules, are know to support myriad of traveling
localizations, or gliders; stationary localizations, or still lives; breathing
stationary localizations, or oscillators [11, 29, 12, 20, 24, 5, 30]. In its origi-
nal form, where transition from living state, ‘1’, to ‘death’ state, ‘2’, does
exist, the Life automata resemble excitable media, including excitable
reaction-diffusion systems. There is also a family of Life-life rules, where
‘cells never die’, or the state ‘1’ is an absorbing state. This is the fam-
ily of Life without Death, invented by Griffeath and Moore in [12]. In
the Life without Death automata we can still observe propagating local-
izations, formed due to rule-based restrictions on propagation similar to
that in sub-excitable chemical media and plasmodium of Physarum poly-
cephalum [7], but no complicated periodic structures or global chaotic
behavior occurs.

The Life without Death family of cell-state transition rules is the
Game of Life equivalent of the precipitating chemical systems. This is
demonstrated in our computational-phenomenological studies of semi-
totalistic and precipitating CA [5], where we selected a set of rules, iden-
tified by periodic structures, which is named as Life 2c22 [21].5 The clans
closest to the family 2c22 are Diffusion Rule (Life rule B2/S7) [17], all
they also into of a big cluster named as Life dc22.

A partial but important result was find an indestructible pattern into
Life rules. The Life families with indestructible patterns allow us to study
a computational potential of the propagating precipitating systems. We
employ our previous results on chemical laboratory prototypes of XOR
gates in precipitating chemical media [3], and design a binary adder in
the CA equivalent of the precipitating chemical medium. In Sect. 2 we
overview basic patterns emerging in rule B2/S2 . . . 8. Logical gates and
a binary full adder are constructed in Sect. 3.

2 Life rule B2/S2 . . . 8

The Life rule B2/S2 . . . 8 is described as follows. Each cell takes two
states ‘0’ (‘dead’) and ‘1’ (‘alive’), and updates its state depending on
its eight closest neighbors as follows:

1. Birth: a central cell in state 0 at time step t takes state 1 at
time step t + 1 if it has exactly two neighbors in state.

5 http://uncomp.uwe.ac.uk/genaro/diffusionLife/life 2c22.html



2. Survival: a central cell in state 1 at time t remains in the
state 1 at time t + 1 if it has more then one live neighbor.

3. Death: all other local situations.

Once a resting lattice is perturbed, few cells assigned live states, pat-
terns formed and grow quickly. Most interesting behavior occurs when
at least 20% of cells are initially alive. A general behaviour of rule
B2/S2 . . . 8 can be well described by a mean field polynomial and its
fixed points (see Fig. 1) [23, 14], as follow:
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Fig. 1. Mean field curve for B2/S2 . . . 8.

High densities of domains dominated by state 1 correspond to p =
0.9196 to p = 1 (also we can consider p = 0.6598 to p = 0.7252, all they
are stable fixed points). Interesting behavior can be found in extreme
unstable fixed points when p = 0.00036 to p = 0.001. Thus unstable
fixed points may represent gliders and small oscillators as show Fig. 1.

(a) (b) (c) (d)

Fig. 2. Basic periodic structures in B2/S2 . . . 8: (a) glider period one, (b) os-
cillator period one, (c) flip-flop, and (d) still life configuration.



Minimal localizations, or basic periodic structures, in rule B2/S2 . . . 8
include gliders, oscillators, flip-flops, and still life (stationary localiza-
tion) configurations (Fig. 2).

Fig. 3. Indestructible Still Life family patterns derived in rule B2/S2 . . . 8.

A relevant characteristic was that the rule B2/S2 . . . 8 supports in-
destructible patterns, which can not be destroyed from any perturbation,
they belong to the class of stationary localizations, still lives [10, 22].
The minimal indestructible pattern is show in Fig. 2d. More heavier, in
a number of live cells, patterns are provided in Fig. 3.

external perturbation (random) internal perturbation (virus)

external perturbation (glider collisions) internal perturbation (glider collision)

Fig. 4. Indestructible Still Life colonies ‘tested’ by internal and external per-
turbations. Each pair of snapshots represents an initial condition (on the left)
and a final, i.e. stationary, configuration (on the right).



In CA rule B2/S2 . . . 8 one can setup colonies of the indestructible
structures as sets of block patterns, which are capable for resisting inter-
nal and external perturbations, see examples in Fig. 4. The indestructible
patterns symbolize a precipitation in CA development. We use these pat-
terns to architecture channels, or wires, for signal propagation.

The Still Life blocks are not affected by their environment however
they do affect their environment. As demonstrated in Fig. 4, bottom
scenarios, gliders colliding to the Still Life walls are transformed into
propagating patterns, which fill the automaton lattice.

Localizations colliding to Still Life blocks become delocalised.

We use this feature of interactions between stationary and mobile
localizations in designing logical circuits.

3 Computing with propagating patterns

We implement computation with patterns propagating in the Life rule
B2/S2 . . . 8 is follows. A computing scheme is build as channels, geomet-
rically constrained by Still Life indestructible blocks, and T -junctions6

between the channels. Each T -junction consists of two horizontal chan-
nels A and B (shoulders), acting as inputs, and a vertical channel, C,
assigned as an output. Such type of circuitry have been already used
to implement xor gate in chemical laboratory precipitating reaction-
diffusion systems [3, 4], and precipitating logical gates in CA [16]. A
minimal width of each channel is calculated as three widths of the Still
Life block (Fig. 2d) and width of a glider (Fig. 2a).

(a) (b)

Fig. 5. Feedback channels constructed with still life patterns (a) show the ini-
tial state with the empty channel and a glider (top) and final state representing
value 0 (low), and (b) show non-symmetric patterns representing value 1.

6 T -junction based control signals were suggested also in von Neumann [28]
works.



Boolean values are represented by gliders, positioned initially in the
middle of channel, value 0 (Fig. 5a, top), or slightly offset, value 1
(Fig. 5b, top). The initial positions of the gliders determine outcomes
of their delocalisation. Glider, corresponding to the value 0 delocalised
into regular identified by a symmetric pattern, like frozen waves of exci-
tation, patterns (Fig. 5a, bottom). Glider, representing the value signal
value 1, delocalises into the less regular patterns (Fig. 5b, bottom) identi-
fied by a non-symmetric pattern although eventually it became periodic
on a long channel but not symmetric.

The patterns, representing values 0 and 1, propagate along the chan-
nels and meet at the T -junctions. They compete for the output channel,
and, depending on initial distance between gliders, one of the patterns
win and propagates along the output channel. Figure 6 shows final con-
figurations of basic logical gates.

The gates can be cascaded into more ‘useful’ circuits, e.g. binary
adders. See a scheme representation based in T -junctions from its tradi-
tional circuit of a binary half-adder in Fig. 7.

Implementation of final configuration of the one-bit half-adder are
shown in Fig. 8. Thus the circuity can be extended to a full adder (Fig. 9).
Configuration of the adder, outlined with Still Life blocks, and descrip-
tion of computation stages are shown in Fig. 10. The full adder consists of
16 T -junctions, linked together by channels, and involve synchronization
signals as well.

Finally the full adder was constructed on 1, 118× 1, 326 cells lattice,
and there were 66,630 live cells involved in 952 generations in total. A
data-area of the full adder is shown in Fig. 11.

4 Conclusions

Result presented in the paper demonstrate how to implement compu-
tation at the systems with propagating precipitating patters based in
T -junction system. Also, we shown universal computing in Life rules do-
main with the Life rule B2/S2 . . . 8 by implementing basic logical gates
and full binary adder. Relevance of this result in CA literature specially
into Life rules was besides showing universality in other evolution rule
different to the Game of Life proposed in several works.

Problems related to configurations done a complete computation in-
volucre space complexity and possible architecture of implementation,
also of different orders of CA [27]. In this way it is possible look complex
constructions in Life domain [9, 25] or using the isotropic neighborhood
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Fig. 7. Half adder circuit (top) and scheme of its implementation by propa-
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O/0

O/0 O/0

O/1O/0

O/1

O/1 O/0

I/0

I/0

I/1

I/0

I/1

I/1

I/0

I/1

I/1

I/0 I/1

I/1

I/0

I/1

I/0

I/0

(a) (b)

(c) (d)

Fig. 8. Half adder implemented in Life rule B2/S2 . . . 8. Operations represent
sums (a) 0 + 0, (b) 0 + 1, (c) 1 + 0, and (d) 1 + 1 where besides its carry out
is preserved in this case.
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Fig. 9. Full binary adder circuit.

[26]. However in this case gliders were used to produce a propagation of
patterns and not to produce new gliders or Life objects.7

Future work will concern with explicit construction of a Turing ma-
chine, computer design, solitons [15], systems self-copying [19] and de-
tailed study and classification of indestructible still life patterns in Life
dc22.

Sources, stuff and specific initial condition (.rle files)8 to reproduce
these results are also available from http://uncomp.uwe.ac.uk/genaro/
diffusionLife/B2-S2345678.html
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Fig. 11. Full binary adder serial implementation in Life rule B2/S2 . . . 8
(zoom-in data area).
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