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In the case of one-dimensional cellular automaton (CA), a hybrid CA (HCA) is the member
whose evolution of the cells is dependent on nonunique global functions. The HCAs exhibit a wide
range of traveling and stationary localizations in their evolution. We focus on HCA with memory
(HCAM) because they produce a host of gliders and complicated glider collisions by introducing
the hybrid mechanism. In particular, we undertake an exhaustive search of gliders and describe
their collisions using quantitative approach in HCAM(43, 74). By introducing the symbol vector
space and exploiting the mathematical definition of HCAM, we present an analytical method of
complex asymptotic dynamics of the gliders.
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1. Introduction

Cellular automata (CAs) are dynamical systems
discrete in time and space: the next state of each cell
depends solely on its current neighborhood configu-
ration [Von-Neumann, 1966]. One of the most inter-
esting subjects about CAs is that a kaleidoscope
of marvellous spatiotemporal patterns can continu-
ously spring up from apparently simple rules. The
patterns guide us on the trips into the depths of
the field of the computing universe [Adamatzky &
Mart́ınez, 2016]. Significantly, elementary cellular

automaton (ECA) is a one-dimensional array of
finite automaton, each one has two states and
updates its state in discrete time depending on its
own state and states of its two closest neighbors
synchronously [Wolfram, 1983, 1984, 1986]. Wol-
fram informally divided the 256 ECA rules into
four classes using dynamical concepts — stability,
periodicity, chaos and complexity [Wolfram, 2002].
Notably, it is worth mentioning that ECA rule 110,
belonging to complexity, has been proved univer-
sal via simulating a cyclic tag system [Cook, 2004].
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Conventional CAs are Markovian (ahistoric,
memoryless for 1). In order to extend ECA rules,
Alonso-Sanz originally proposed ECA with mem-
ory (ECAM), whose each output cell is allowed
to remember its previous states during a certain
fixed period of evolution [Alonso-Sanz & Martin,
2002, 2003, 2004, 2006]. The memory mechanism
is roughly divided into embedded memory and
delay memory, each of which can be subdivided
into several types ulteriorly. For example, the work
[Mart́ınez et al., 2013] explored three delay mem-
ory functions — majority, minority and parity.
This way, any ECA class can be transformed to
another ECA class — without changing the skele-
ton of cell-state transition function — and vice
versa by just selecting an appropriate kind of mem-
ory. For instance, under particular majority mem-
ory functions, rule 30 and rule 126 are endowed
with complex gliders phenomena. Their morpho-
logical complexity and glider dynamics are ana-
lyzed in [Mart́ınez et al., 2010a, 2010b] by mean
field approximation, representation of tiles, basins
of attraction, De Bruijn diagrams and so on.
After classifying and coding the gliders, glider col-
lisions are also explored in detail. In addition,
there are many more research on CA with mem-
ory, see [Alonso-Sanz, 2013, 2016] and references
therein.

Here, we briefly introduce the definitions of
ECAM and hybrid CA (HCA). Each ECAM rule is
composed of the memory function and the original
ECA rule. In particular, for the memory function
in [Chen et al., 2015], the number of cells perform-
ing memory is three (τ = 3); that is, the memory
values are determined by the last three states of
each cell. Furthermore, we regard minority memory
as a function, which implies the ability of record-
ing the values that have the minimum number of
the corresponding last three states of each cell. For
the cells at the moment, a row of memory values
can be calculated. Then, the row of cell states at
the next moment can be obtained via implement-
ing the original ECA rule. On the other hand, in the
case of one-dimensional CA, when the evolution of
every single cell is only dependent on the unique
global function, the CA is called uniform, otherwise
it is called hybrid. Denoted by HCA(N,M), HCA
rule composed of ECA rule N and ECA rule M , is
specified to obey the ECA rule N at odd sites of
the cell array and obey the rule M at even sites of

the cell array [Cattell & Muzio, 1996; Bingham &
Bingham, 2007]. Although the simple rules of HCA
act on the same square tile structures, HCA may
exhibit complex dynamical behaviors through local
interactions.

Let the memory function (τ = 3) be a con-
crete ECA rule, this paper conceives a partic-
ular extended ECAM model — hybrid cellular
automata with memory (HCAM). One interest-
ing question is whether the complicated dynamical
behaviors can be captured in HCAM rules. Based on
large amount of computer simulations and empiri-
cal observations, we list a multitude of HCAM rules
of newfound and strong nonlinear spatiotemporal
patterns.

In particular, though ECA rule 43 and rule
74 have simple evolution patterns respectively,
HCAM(43, 74) sparks off a series of different glid-
ers and collisions because of the interaction of two
local rules. In general, gliders are localized struc-
tures of nonquiescent and nonether patterns (ether
represents a periodic background) translating along
the automaton’s lattice. Importantly, as gilders are
crucial components of conception and simulation
of the universal computing model, the concrete
rules with a great variety of gliders have captured
special attention in a series of CA research work
[Mart́ınez et al., 2010a; Cook, 2004; Freire & Gal-
las, 2007; Chen et al., 2012; Mart́ınez et al., 2014].
It leads to an intriguing possibility: HCAM(43, 74)
is an ideal candidate for the universal comput-
ing. In this paper, we are devoted to expand-
ing an analytical characterization of symbolic
dynamics analysis of the gliders with the HCAM
rules.

The rest of this article is organized as follows:
Section 2 presents several definitions of HCAM rules
and introduces the HCAM(43, 74). After classify-
ing and coding the gliders in HCAM(43, 74), the
collision formula are depicted in Sec. 3 through
ether and glider factors. Furthermore, by intro-
ducing the symbol vector space and exploiting the
mathematical definition of HCAMs, Sec. 4 investi-
gates in detail the dynamical properties of glider
f by directed graph representation and transition
matrix in the framework of symbolic dynamics. It is
worth mentioning that the method is easy to apply
to all other gliders in HCAM(43, 74) or different
HCAM rules. Finally, Sec. 5 highlights the main
results.
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Fig. 1. The newfound spatiotemporal patterns of several HCAM rules.
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2. The Introduction of
HCAM(43, 74)

First and foremost, following [Zhou, 1997; Kitchens,
1998], several terminology and notations are the
necessary prerequisites to the rigorous consideration
of this subject. The set of biinfinite configurations
is denoted by SZ = · · ·S ×S ×S · · · and a metric d
on SZ is defined as

d(x, x) =
+∞∑

i=−∞

1
2|i|

d̃(xi, xi)
1 + d̃(xi, xi)

,

where S = {0, 1, . . . , k − 1}, x, x ∈ SZ and d̃(·, ·) is
the metric on S defined as d̃(xi, xi) = 0, if xi = xi;
otherwise, d̃(xi, xi) = 1. The classical right-shift
map σ is defined by [σ(x)]i = xi−1 for any x ∈ SZ ,
i ∈ Z. A map F : SZ → SZ is a CA if and
only if it is continuous and commutes with σ, i.e.
σ ◦ F = F ◦ σ. For any CA, there exists a radius
r ≥ 0 and a local rule N : S2r+1 → S such that
[F (x)]i = N(x[i−r,i+r]). Moreover, (SZ , F ) is a com-
pact dynamical system.

According to the definition of ECAM [Alonso-
Sanz & Martin, 2003; Mart́ınez et al., 2013], a mem-
ory function φ is implemented as follows: s

(t)
i =

φi(x
(t−τ+1)
i , . . . , x

(t−1)
i , x

(t)
i )T , where 1 ≤ τ ≤ t

determines the degree of memory and φi denotes
the ith symbol of global memory function φ. Thus,

τ = 1 means conventional evolution, whereas τ = t
means unlimited trailing memory. Each cell trait
si ∈ S is a state function of the states of cell
i with memory backward up to the value τ . The
memory implementation selected in this analysis
commences to act as soon as t reaches the τ time-
step. Initially, i.e. t < τ , the automaton evolves
in the conventional way. Furthermore, the original
rule is applied on the cell states s to get an evolu-
tion with memory as: [f(· · · , s(t)

i−1, s
(t)
i , s

(t)
i+1, · · ·)]i =

x
(t+1)
i . In particular, the simplified expression of F

is f ◦ φ(x(t−τ+1), . . . , x(t−1), x(t))T = x(t+1), where
x(t+k) = (· · · , x(t+k)

i−1 , x
(t+k)
i , x

(t+k)
i+1 , · · ·), k = −τ +

1, . . . ,−1, 0, 1.
As is to be expected, if we set the memory

function as a concrete ECA rule, a kind of hybrid
CA evolution function will be composed of a pair
of ECA rules. Denoted by HCAM(N,M), a hybrid
CA rule is composed of ECA rule N and ECA rule
M , which is specified to obey the ECA rule N in
the vertical direction — s

(t)
i = [fN (xt−2

i , xt−1
i , xt

i)
T ]i

and obey the rule M in the horizontal direction —
x

(t+1)
i = [fM (· · · , s(t)

i−1, s
(t)
i , s

(t)
i+1, · · ·)]i. Then, the

dynamical behavior of ECA rule M will also be
changed in a subtle way. A schematic diagram of
HCAM rule is provided in Fig. 2.

The spatiotemporal patterns of HCAM(43, 74)
are displayed in Fig. 3. It is noted that all patterns

Fig. 2. The schematic diagram of HCAM(43, 74).
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Fig. 3. Spatiotemporal pattern of HCA(168, 133), where white pixels are cells with state 0, and black pixels are cells with
state 1 except the background of ether.

in this paper are studied under the periodic bound-
ary condition. By designing a single filter of ether,
the gliders are easy to be distinguished from each
other.

Here, several computer experiment methods —
Hamming distance, Jaccard distance, and Lameray
diagram — are applied to explore the complexity of
dynamical evolution process of three configurations
in HCAM(43, 74). We compute the Hamming dis-
tance and Jaccard distance of each adjacent states,
then draw the simulation diagrams according to the
data.

Given two states in chronological order x(t) and
x(t+1), each with n cells, the Jaccard coefficient
is a useful measure of the overlap that x(t) and
x(t+1) share with their states. Each attribute of x(t)

and x(t+1) can either be 0 or 1. The total num-
ber of each combination of cells for both x(t) and
x(t+1) are specified as follows: n11 represents the

total number of cells where x(t) and x(t+1) both
have the value of 1; n01 represents the total num-
ber of cells where the attribute of x(t) is 0 and the
attribute of x(t+1) is 1; n10 represents the total num-
ber of cells where the attribute of x(t) is 1 and the
attribute of x(t+1) is 0; n00 represents the total num-
ber of cells where x(t) and x(t+1) both have a value
of 0. Each cell must fall into one of these four cat-
egories, meaning that n11 + n01 + n10 + n00 = n.
The Jaccard similarity coefficient, J , is given as
J = n11/(n01 + n10 + n11). The Jaccard distance,
dJ , is given as dJ = (M01 + M10)/(M01 + M10 +
M11) = 1 − J .

The Hamming distance between x(t) and x(t+1),
for the fixed length n, is the number of positions
at which the corresponding symbols are different,
which measures the minimum number of substitu-
tions required to change x(t) into x(t+1). Further-
more, we standardize each distance value (divide n)
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Fig. 4. (a) The spatiotemporal pattern of HCAM(43, 74) under random initial condition with 300 cells and 300 time steps,
(b) the Jaccard distance diagram, (c) the Hamming distance diagram. At different measurement scales, the two diagrams
show that there is no repeat of the states and present the random walk on the time series, (d) Lameray diagram without the
cobweb, (e) Lameray diagram for first 50 iterations and (f) Lameray diagram for 300 iterations. The gray level of cobwebs is
continuously deepening with steps. The cobwebs point to disordered directions subsequently. As is shown above, this implies
the evolution of HCAM(43, 74) is unpredictable and complicated because of the gliders’ collisions.

1750082-6



June 20, 2017 14:22 WSPC/S0218-1274 1750082

Glider Collisions in Hybrid Cellular Automaton with Memory Rule(43, 74 )

0.434 0.436 0.438 0.440 0.442 0.444
0.434

0.436

0.438

0.440

0.442

0.444

(a) (d)

50 100 150 200 250 300

0.525

0.530

0.535

0.434 0.436 0.438 0.440 0.442 0.444
0.434

0.436

0.438

0.440

0.442

0.444

(b) (e)

50 100 150 200 250 300

0.310

0.312

0.314

0.316

0.318

0.320

0.434 0.436 0.438 0.440 0.442 0.444
0.434

0.436

0.438

0.440

0.442

0.444

(c) (f)

Fig. 5. (a) The spatiotemporal pattern of glider e with 359 cells and 300 time steps, (b) the Jaccard distance diagram, (c)
the Hamming distance diagram. At different measurement scales, the two diagrams show that there is 10-periodic repeat of
the states and presents regular evolution on the time series, (d) Lameray diagram without the cobweb, (e) Lameray diagram
for first 50 iterations and (f) Lameray diagram for 300 iterations. The gray level of cobwebs is continuously deepening with
steps. The cobwebs point to several permanent directions all the while. As is shown above, this implies the states of glider
remain unchanged periodically.
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Fig. 6. (a) The spatiotemporal pattern of fusion with 290 cells and 400 time steps, (b) the Jaccard distance diagram, (c) the
Hamming distance diagram. At different measurement scales, the two diagrams show that the distances are continued growth
and the time series is an analogous oscillator whose fluctuating range is ever-increasing, (d) Lameray diagram without the
cobweb, (e) Lameray diagram for first 50 iterations and (f) Lameray diagram for 400 iterations. The gray level of cobwebs is
continuously deepening with steps. The cobweb’s trajectory expands from the inside out. As is shown above, this implies the
states of fusion are rhythmic and ceaselessly growing.
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in order to better understand the data. For example,
Hamming distance between 00100101 and 11100001
is 3/8.

An instructive way to analyze its dynamics is to
plot the Lameray diagram starting from any generic
initial point, and observe how its “cobweb” evolves
from this initial point step by step. In [Chua et al.,
2005; Chua et al., 2008], the equation of each state
is the decimal equivalent of string (xt

0, . . . , x
t
n−1)

defined by

φt =
I−1∑
i=0

xt
i · 3−(i+1).

However, we modify the equation to calculate the
number of 1 in each string which is defined by

φt =
I−1∑
i=0

xt
i.

This change has less impact on the empirical
observation.

3. Glider Collisions in
HCAM(43, 74)

In order to gain further insights into the rich
dynamics of HCAM(43, 74), we present a system-
atic analysis of computational glider behaviors in
this section. A pair of types — original glider
and composite glider — are classified and coded

depending on dissimilar shift velocity and volumes.
Every glider evolves under the uniform background
of ether. We call the minimum component element
of ether an ether unit. Thus, the background of
ether in HCAM(43, 74) is composed of ether unit



0 1 1
0 1 1 0 1 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 0 0 1

0 0 0 1
1




.

Not all rows of the ether unit have six cells. In
the process of ether matching, the remaining empty
sites will be filled by the adjacent ether unit. And
the whole background of ether can be obtained by
splicing this ether unit repeatedly without any gap
or overlap. To help visualize this, Fig. 7 provides a
schematic diagram of ether matching according to
the definition of tile in [Mart́ınez et al., 2014].

3.1. Classification and codings
of gliders

Besides the ether unit, the shift configurations with-
out arbitrary combination of diverse gliders are
called original gliders (OGs). The OGs are the inde-
pendent gliders which cannot be decomposed into

Fig. 7. The schematic diagram of ether matching, where white pixels are cells with state 0, and gray pixels are cells with
state 1.
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smaller ones. However, if several OGs have the same
velocity, they will probably be assembled together
and there are no ether units among them. These
shift configurations are explicitly considered as the
new gliders — composite gliders (CGs). In a survey
of spatiotemporal patterns of HCA(168, 133), sev-
eral OGs and CGs which have occurred frequently
are recorded as different codings. The spatiotempo-
ral patterns of 122 OGs and CGs are presented in
this paper.

As different types of CGs can be assembled
together by the same OG, we introduce the fol-
lowing codings of CGs. Let ξ be a concrete label
of OG.

(1) The ξn, n = 1, 2, 3, . . . , and ξξ · · · ξξ stand for
the glider which are composed of two or more
same ξ in two ways. As an example, the gliders
i2 and ii are recognized as simple superposition
of two OG i in two ways.

(2) The nξ, n = 1, 2, 3, . . . , stand for the compli-
cated variants of glider ξ (not the simple com-
posite) according to “With”.

(3) The ξ〈n〉, n = 1, 2, 3, . . ., stand for the different
complicated variants of glider ξ (not the simple
composite) according to “With”.

The spatiotemporal patterns of 66 OGs and
CGs are illustrated in Fig. 8, and the others
are placed in Appendix A. Since the evolution of
HCAM(43, 74) is of high complexity and the colli-
sions of different gliders can spark off new gliders,
not all gliders are enumerated here. Table 1 presents
the properties of gliders, where the “Gliders” col-
umn shows the labels of gliders, the “Velocity”
column shows the shift features of gliders and the
“With” column indicates maximal and minimal
sizes of gliders. For any given glider, the veloc-
ity is calculated from its shift number divided by
its period. The plus sign denotes that the glider
shifts to right, and the minus sign denotes that the
glider shifts to left. If a concrete glider is assembled
together by the same OG, the “With” column also
lists some examples which often appear in the pat-
terns. By the way, the spatiotemporal patterns of
three fusions are shown in Fig. 9.

In order to exploit the mathematical definition
of collisions between two gliders in HCAM(43, 74),
we perform a qualitative analysis of collision formu-
lae via one-dimensional strings and introduce the
ether factor and glider factor, which are denoted by
E and [ξ] respectively. Here, ξ is a concrete label of
glider. Firstly, the ether factor

E =




0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1
0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1
0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1




is introduced according to the characterization
of ether unit. For convenience, we introduce
the abbreviations — −(3527595590�2989920790�

2427818420), where the integers are respectively
decimal code expression of three lines string.

The ether factor is determined by the shift char-
acteristic and width of ether unit. Then, the glider
factor [ξ] is introduced which refers to a row cell
state of the glider ξ under the background of the
ether. If the glider ξ has the period M , it has M
different glider factors. For example, because the
glider a has the period 5 according to Table 1, there
are five glider factors and each one can produce the
entire glider a after the evolution of five time steps.
In general, for a pair of gliders ξ and η with differ-
ent velocity, there are two scenarios: when particu-
lar kinds of glider factors [ξ] and [η] are chosen, the
collision results are periodically variational owing
to the different numbers of ether factor between [ξ]
and [η]. However, when the different kinds of glider

factors [ξ]′ and [η]′ are chosen for the same gliders,
the collision results are possibly not coincident with
the above results. For convenience, we only select a
fixed glider factor for each glider, and it has no effect
on the observations of complex collisions concerning
two gliders in this subsection. The abbreviations of
the glider factors are provided in Table 2.

Specially, glider factors are captured as NE ∪
[ξ] ∪ NE , the natural number N represents the
number of ether factor. Subsequently, the collision
results depend on a periodic manner according to
the different number of ether factors between two
gliders. Let Q denote the value of this period. Each
collision formula is introduced as

[ξ] ∪ (QN + I)E ∪ [η] → {results},
where QN + I is the number of ether factor E
between two gliders, N is a natural number and
I = 1, 2, . . . , Q. However, if the two gliders have

1750082-10
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Fig. 8. The spatiotemporal patterns of several gliders.
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Table 1. Characterizations of OGs and DCGs.

Glider Velocity With Glider Velocity With

Ether unit −1/5 1–6

a −1/5 3–4 2j〈5〉 4/12 8–14

b −1/5 7–8 j〈5〉 i 4/12 15–21
5b −1/5 11–12 j〈8〉 4/12 11–17

ba −1/5 11–12 j〈9〉 4/12 11–17

c −1/5 7–8 j〈9〉 i 4/12 19–25
2c a −1/5 11–12 j〈10〉 i 4/12 19
8c −1/5 12–13 j〈11〉 4/12 12–18

d −1/5 5–6 8j〈11〉 4/12 20–26

d〈2〉 −1/5 8–9 j j〈11〉 4/12 20–24

d〈3〉 −1/5 9–10 k 4/12 7–13

d 2c −1/5 13–14 2k 2l〈6〉 4/12 21–27

e −2/10 7 k〈2〉 4/12 10–14
4e −2/10 9–10 k〈3〉 4/12 14–20

e〈2〉 −2/10 10 k〈4〉 4/12 7–11

e〈2〉 2c b 7c −2/10 37–38 l 4/12 9–15

e〈3〉 −2/10 14 l〈5〉 4/12 5–11

f −2/42 9–16 l〈6〉 4/12 5–9

f〈2〉 −7/68 19–26 l〈9〉 4/12 10

f〈3〉 −4/84 9–23 l〈10〉 k 4/12 19–23

g −1/69 10–17 l〈12〉 4/12 10–16

g〈2〉 −1/37 12–19 2l〈13〉 4/12 13–19

h −1/37 10–14 l〈15〉 4/12 13–19

i 4/12 3–9 m 4/12 7–13

i2 4/12 7–13 m〈6〉 4/12 11–15

i2 ii 4/12 25–30 m〈8〉 i2 i i2 4/12 45–51

i2 j〈7〉 4/12 23–29 m〈10〉 4/12 17–23

ii 4/12 12–16 n 2/22 4–11

i 3i 4/12 16–19 n〈2〉 2/22 9–15

iik 4/12 20–26 o 3/17 6–12

ii l〈3〉 4/12 23–29 p 1/27 10–17

i j〈2〉i 4/12 15–19 q 3/49 6–17

j 4/12 3–9 r 3/49 8–15

j〈5〉 4/12 6–12 s 3/49 8–21
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Fig. 9. The spatiotemporal patterns of three fusions.

Table 2. Decimal expressions of glider factors.

Glider Factor With Decimal Expression

[a] 23 (6889542�5839766�4741812)

[b] 14 (12870�10262�9652)

[5b] 18 (242246�186390�189876)

[ba] 37 (112883053126�95677458454�77690201524)

[c] 20 (863814�729622�592308)

[2c a] 31 (1763724870�1494979094�1213905332)

[8c] 32 (3527601734�2989978134�2427828660)

[d] 12 (3526�2582�2356)

[d〈2〉] 28 (220474950�186871318�151736756)

[d〈3〉] 35 (28220760134�23919367062�19422546612)

[d 2c] 20 (945606�748054�739636)

[e] 39 (451532235334�382709860630�310760758452)

[4e] 35 (28220764742�23910988054�19422551220)

[e〈2〉] 42 (3612257891910�3061678871446�2486086067636)

[e〈2〉 2c b 7c] 44 (16384381235782�12604123124118�12870253732020)

[e〈3〉] 46 (57796126291526�48986862228374�39777377117620)

[f ] 35 (28220765894�23919376918�19422551220)

[f〈2〉] 32 (3538817606�2994143766�2428182964)

[f〈3〉] 16 (58054�46102�45236)

[g] 42 (3612257891910�3061678885270�2486086067636)

[g〈2〉] 25 (27641926�23389206�18969012)

[h] 26 (55117382�46713238�37936564)

(Continued)
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Table 2. (Continued)

Glider Factor With Decimal Expression

[i] 16 (53830�45590�37044)

[i2] 32 (3527594566�2989920790�2427818164)

[i2 ii] 32 (3594703430�2987823638�2444595380)

[i2 j〈7〉] 36 (56417768006�47793476118�38691770548)

[ii] 32 (3527594566�2989928982�2427818164)

[i 3i] 32 (3527857734�2989928982�2444530100)

[iik] 39 (451512816198�382691881494�310759493812)

[ii l〈3〉] 29 (407032390�372683286�364220596)

[i j〈2〉 i] 31 (1763918406�1494962710�1213862068)

[j] 15 (26694�22678�18484)

[j〈5〉] 12 (2246�2710�564)

[2j〈5〉] 33 (7055190726�5979834518�4855633460)

[j〈5〉 i] 28 (220489926�186739350�151732788)

[j〈8〉] 23 (6834246�5804566�4732340)

[j〈9〉] 42 (2228320654918�2846258270742�801291735476)

[j〈9〉 i] 26 (56133190�46667286�38123700)

[j〈10〉 i] 51 (1849476033873478�1567579581981206�1272876053918132)

[j〈11〉] 25 (27543110�23332374�18892852)

[8j〈11〉] 45 (28898059284038�24493403108886�19888669964340)

[jj〈11〉] 40 (903059040326�765425440790�621519128628)

[k] 39 (451532234822�382709858838�310760755636)

[2k 2l〈6〉] 28 (224990790�186712598�151523508)

[k〈2〉] 30 (881893958�747485718�606952116)

[k〈3〉] 20 (579654�710166�177588)

[k〈4〉] 23 (6889542�5838358�4739508)

[l] 16 (49734�45590�42164)

[l〈5〉] 37 (112883062342�95677485590�77690180020)

[l〈6〉] 21 (1722438�1458710�1184948)

[l〈9〉] 42 (3612257884870�3061678889110�2486086063668)

[l〈10〉 k] 39 (451529856710�382712853526�310759428276)

[l〈12〉] 36 (56441530950�47838732822�38845090484)

[2l〈13〉] 44 (14449031801414�12246715560470�9944343228724)

[l〈15〉] 32 (3527578182�2989896854�2427826612)

[m] 32 (3527595462�2989916182�2427814196)

[m〈6〉] 27 (110193222�93401622�75510196)

[m〈8〉 i2 i i2] 64 (15150907678911532102�12841647197503522326�10427119246272452020)

[m〈10〉] 23 (6834246�4768278�4756916)

[n] 24 (13779526�11679254�9483828)

[n〈2〉] 41 (1806128941254�1530839442582�1243043033652)

[o] 31 (1763797574�1494960150�1213909428)

[p] 23 (6911558�5846038�4742580)

[q] 18 (215110�182678�147892)

[r] 15 (30406�23062�23732)

[s] 15 (1726534�1459606�1184180)
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only one collision result, the collision formula is
simplified into [ξ] ∪ [η] → {results}, for instance,
[i] ∪ [b] → {j}.

4. A Symbolic Dynamics
Perspective of the Gliders
in HCAM

4.1. The fundamental concepts
of symbolic dynamics

In order to introduce a symbolic vector map F in
the following, the original symbolic space SZ must
be extended to symbolic vector space

SZ
n = {X = (x(1)T , x(2)T , . . . , x(n)T )T |

x(j)T ∈ SZ , j = 1, 2, . . . , n},
where T refers to the transposed operation. Thus,
the metric d∗ on SZ

n is defined as

d∗(X, X) =




n∑
j=1

d(x(j), x(j))




1
n

.

Obviously, d∗ satisfies the distance conditions of
non-negativity, symmetry and transitivity. Conse-
quently, the definition of symbolic vector map F :
SZ

n → SZ
n is

F




x(1)

x(2)

...

x(n)




=




f(x(1))

f(x(2))
...

f(x(n))




,

where f : SZ → SZ is the symbolic sequence map
[Chen et al., 2012; Zhou, 1997]. (SZ

n , F ) is a com-
pact dynamical system.

Definition 4.1. F is chaotic on SZ
n in the sense of

Li–Yorke if

(1) lim
n→∞ sup d(Fn(X), Fn(Y )) > 0,

∀X,Y ∈SZ
n , X �= Y ;

(2) lim
n→∞ inf d(Fn(X), Fn(Y )) = 0, ∀X,Y ∈SZ

n .

We say X ∈ SZ
n is a n-periodic point of F if

there exists the integer n > 0 such that Fn(X) = X.
Let P (F ) stand for the set of all n-period points,
that is, P (F ) = {X ∈ SZ

n | ∃n > 0, Fn(X) = X}.
In particular, if F (X) = X for several X ∈ SZ

n , X

is fixed point. Then, F is said to be topologically
transitive if for any nonempty open subsets U and
V of SZ

n there exists a natural number n such that
Fn(U) ∩ V �= ∅. P (F ) is called a dense subset of
SZ

n if, for any X ∈ SZ
n and any constant ε > 0,

there exists a Y ∈ P (F ) such that d(x, y) < ε. F is
sensitive to initial conditions if there exists a δ > 0
such that, for X ∈ SZ

n and for any neighborhood
B(X) of X, there exists a Y ∈ B(X) and a natural
number n such that d(Fn(X), Fn(Y )) > δ.

Definition 4.2. F is chaotic on SZ
n in the sense of

Devaney if (1) F is transitive; (2) P (F ) is a dense
subset of SZ

n ; (3) F is sensitive to initial conditions.

Let R ⊂ SZ
n be called a (n, ε)-spanning set

iff for any X ∈ SZ
n and any constant n > 0,

ε > 0, there exists a Y ∈ R such that d(F i(X),
F i(Y )) ≤ ε, i = 0, 1, . . . , n − 1. Thus, rn(ε, SZ

n , F )
stands for the infimum of cardinal number of (n, ε)-
spanning set with F . The Bowen’s topological
entropy is defined as follows:

ent(F ) = lim
ε→∞ lim

n→∞ sup
1
n

log rn(ε, SZ
n , F ).

In addition, F is topologically mixing if there exists
a natural number N such that Fn(U) ∩ V �= ∅ for
the entire n ≥ N .

Theorem 1

(1) F is chaos in the sense of Li–Yorke and this can
be deduced from positive topological entropy.

(2) F is chaos in the sense of Devaney and Li–
Yorke and this can be deduced from topologically
mixing.

A set X ⊆ SZ
n is F -invariant if F (X) ⊆ X and

strongly F -invariant if F (X) = X. If X is closed
and F -invariant, then (X,F ) or simply X is called
a subsystem of F . A set X ⊆ SZ

n is an attractor if
there exists a nonempty clopen F -invariant set Y
such that

⋂
t≥0

F t(Y ) = X.

For instance, fixed point set and periodic point
set are two types of simple attractor. Furthermore,
there always exists a global attractor, denoted by

Λ =
⋂
t≥0

F t(SZ
n ),

which is also called the limit set of F .
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As every column of X is Xi = (x(1)
i , x

(2)
i , . . . ,

x
(n)
i )T , the right shift map σ is defined by [σ(X)]i =

Xi−1 for any X ∈ SZ
n , i ∈ Z. We call the n× i-word

block as 


a
(1)
1 · · · a

(1)
i

· · ·
a

(n)
1 · · · a

(n)
i




of elements of SZ
n . Let A denote a set of some finite

n × i-word blocks over SZ
n , and Λ = ΛA is the set

which consists of the bi-infinite configurations made
up of all the word blocks in A. Then, ΛA is a sub-
system of (SZ

n , σ), where A is said to be the deter-
minative system of Λ. For a closed invariant subset
Λ ⊆ SZ

n , the subsystem (Λ, σ) or simply Λ is called
a subshift of σ.

In order to find the subsystem of finite type, it is
important to assume that the initial configurations
of original stipulation shall be applicable, mutatis
mutandis, to the mathematical definition of ECAM
rules. When t < 3, the first three lines of cell array
of HCAM(43, 74) are all regarded as the random
initial configurations; that is, the second and third
lines of cell array are not regarded to be the evolu-
tion results of the first line according to the ECA
rules. When t ≥ 3, it evolves following the original
approach. Consequently, the new evolution rule F
will be conformed to the mathematical definition of
the function.

At the moment, let n = 3, then SZ
n = SZ

3 . The
symbolic vector map F : SZ

3 → SZ
3 is expressed as

F




x(1)

x(2)

x(3)


 =




x(2)

x(3)

f74 ◦ f43(x(1)T , x(2)T , x(3)T )T




=




x(2)

x(3)

x(4)


.

Analogously,

F 2




x(1)

x(2)

x(3)


 =




x(3)

x(4)

f74 ◦ f43(x(2)T , x(3)T , x(4)T )T




=




x(3)

x(4)

x(5)


.

Based on the above analysis, the functional form of
F t is defined as

F t




x(1)

x(2)

x(3)


 =




f74 ◦ f43(x(t−2)T , x(t−1)T , x(t)T )T

f74 ◦ f43(x(t−1)T , x(t)T , x(t+1)T )T

f74 ◦ f43(x(t)T , x(t+1)T , x(t+2)T )T




,

where t ∈ N and t ≥ 3.

4.2. Complex shift dynamics
of gliders

In the following, an analytical method on the dis-
cussion of the symbolic dynamics of the gliders in
HCAM(43, 74) is carried out. For each glider, a par-
ticular subsystem of (SZ

3 , F ) can be found through
enumeration and computer programming. Then,
the key question is whether the evolution function
is topologically mixing and possesses the positive
topological entropy on this subsystem. For clarity
and convenience, only the glider e is described in
detail.

Proposition 1. For glider e, there exists a subset
ΛA of SZ

3 , such that

F 10(X)|ΛA = σL(X)|ΛA , ∀X ∈ ΛA,

where

ΛA =




X =




x(1)

x(2)

x(3)


 ∈ SZ

3 ,∀ i ∈ Z,




x
(1)
i x

(1)
i+1 · · · x

(1)
i+18 x

(1)
i+19

x
(2)
i x

(2)
i+1 · · · x

(2)
i+18 x

(2)
i+19

x
(3)
i x

(3)
i+1 · · · x

(3)
i+18 x

(3)
i+19




∈ A




,
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where

A = {(185926�430614�364980), (92963�739595�706778), (46481�894085�877677),

(547528�447042�438838), (273764�223521�743707), (136882�111760�371853),

(592729�580168�185926), (296364�290084�92963), (148182�145042�46481),

(598379�596809�547528), (299189�822692�273764), (673882�411346�136882),

(861229�729961�592729), (430614�364980�296364), (739595�706778�148182),

(894085�877677�598379), (447042�438838�299189), (223521�743707�673882),

(111760�371853�861229), (580168�185926�430614), (290084�92963�739595),

(145042�46481�894085), (596809�547528�447042), (822692�273764�223521),

(411346�136882�111760), (729961�592729�580168), (364980�296364�290084),

(706778�148182�145042), (877677�598379�596809), (438838�299189�822692),

(743707�673882�411346), (371853�861229�729961), (145042�570769�369797),

(596809�285384�184898), (298404�142692�616737), (149202�595634�832656),

(74601�297817�940616), (561588�148908�470308), (280794�74454�759442),

(140397�37227�904009), (594486�542901�452004), (821531�271450�226002),

(410765�135725�113001), (729670�592150�580788), (364835�296075�290394),

(706705�148037�145197), (877640�598306�596886), (438820�299153�822731),

(743698�673864�411365), (371849�861220�729970), (185924�430610�364985),

(92962�739593�706780), (46481�894084�877678), (547528�447042�438839),

(92963�739595�182490), (570769�369797�91245), (285384�184898�569910),

(142692�616737�809243), (595634�832656�404621), (297817�940616�726598),

(148908�470308�363299), (74454�759442�705937), (37227�904009�877256),

(542901�452004�438628), (271450�226002�743602), (135725�113001�371801),

(592150�580788�185900), (296075�290394�92950), (148037�145197�46475),

(598306�596886�547525), (299153�822731�273762), (673864�411365�136881),

(861220�729970�592728), (430610�364985�296364), (739593�706780�148182),

(894084�877678�598379), (447042�438839�299189), (430614�364980�820652),

(739595�182490�410326), (369797�91245�729451), (184898�569910�889013),

(616737�809243�968794), (832656�404621�484397), (940616�726598�766486),

(470308�363299�383243), (759442�705937�191621), (904009�877256�620098),

(452004�438628�310049), (226002�743602�679312), (113001�371801�863944),

(580788�185900�431972), (290394�92950�740274), (145197�46475�894425),

(596886�547525�447212), (822731�273762�223606), (411365�136881�111803),

(729970�592728�580189), (364985�296364�290094), (706780�148182�145047),
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(877678�598379�596811), (438839�299189�822693), (364980�820652�290084),

(182490�410326�145042), (91245�729451�596809), (569910�889013�822692),

(809243�968794�411346), (404621�484397�205673), (726598�766486�627124),

(363299�383243�313562), (705937�191621�156781), (877256�620098�602678),

(438628�310049�825627), (743602�679312�412813), (371801�863944�730694),

(185900�431972�365347), (92950�740274�706961), (46475�894425�877768),

(547525�447212�438884), (273762�223606�743730), (136881�111803�371865),

(592728�580189�185932), (296364�290094�92966), (148182�145047�46483),

(598379�596811�547529), (299189�822693�273764), (820652�290084�617251),

(410326�145042�832913), (729451�596809�940744), (889013�822692�470372),

(968794�411346�759474), (484397�205673�379737), (766486�627124�189868),

(383243�313562�94934), (191621�156781�47467), (620098�602678�548021),

(310049�825627�274010), (679312�412813�137005), (863944�730694�592790),

(431972�365347�296395), (740274�706961�148197), (894425�877768�598386),

(447212�438884�299193), (223606�743730�673884), (111803�371865�861230),

(580189�185932�430615), (290094�92966�739595), (145047�46483�894085),

(596811�547529�447042), (822693�273764�223521), (290084�617251�739595),

(145042�832913�894085), (596809�940744�447042), (822692�470372�747809),

(411346�759474�898192), (205673�379737�973384), (627124�189868�486692),

(313562�94934�767634), (156781�47467�908105), (602678�548021�454052),

(825627�274010�227026), (412813�137005�113513), (730694�592790�581044),

(365347�296395�290522), (706961�148197�145261), (877768�598386�596918),

(438884�299193�822747), (743730�673884�411373), (371865�861230�729974),

(185932�430615�364987), (92966�739595�706781), (46483�894085�877678),

(547529�447042�438839), (617251�739595�706778), (832913�894085�877677),

(940744�447042�438838), (470372�747809�743707), (759474�898192�371853),

(379737�973384�710214), (189868�486692�355107), (94934�767634�701841),

(47467�908105�875208), (548021�454052�437604), (274010�227026�743090),

(137005�113513�371545), (592790�581044�185772), (296395�290522�92886),

(148197�145261�46443), (598386�596918�547509), (299193�822747�273754),

(673884�411373�136877), (861230�729974�592726), (430615�364987�296363),

(739595�706781�148181), (894085�877678�598378), (739595�706778�410326),

(894085�877677�205163), (447042�438838�626869), (747809�743707�313434),

(898192�371853�156717), (973384�710214�602646), (486692�355107�301323),
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(767634�701841�150661), (908105�875208�599618), (454052�437604�299809),

(227026�743090�674192), (113513�371545�861384), (581044�185772�430692),

(290522�92886�739634), (145261�46443�894105), (596918�547509�447052),

(822747�273754�223526), (411373�136877�111763), (729974�592726�580169),

(364987�296363�290084), (706781�148181�145042), (877678�598378�596809),

(438839�299189�822692), (706778�410326�145042), (877677�205163�596809),

(438838�626869�298404), (743707�313434�149202), (371853�156717�74601),

(710214�602646�561588), (355107�301323�280794), (701841�150661�140397),

(875208�599618�594486), (437604�299809�821531), (743090�674192�410765),

(371545�861384�729670), (185772�430692�364835), (92886�739634�706705),

(46443�894105�877640), (547509�447052�438820), (273754�223526�743698),

(136877�111763�371849), (592726�580169�185924), (296363�290084�92962),

(148181�145042�46481), (598378�596809�547528), (820652�290084�92963),

(410326�145042�570769), (205163�596809�285384), (626869�298404�142692),

(313434�149202�595634), (156717�74601�297817), (602646�561588�148908),

(301323�280794�74454), (150661�140397�37227), (599618�594486�542901),

(299809�821531�271450), (674192�410765�135725), (861384�729670�592150),

(430692�364835�296075), (739634�706705�148037), (894105�877640�598306),

(447052�438820�299153), (223526�743698�673864), (111763�371849�861220),

(580169�185924�430610), (290084�92962�739593), (145042�46481�894084)}.

Remark 4.1. The A is the determinative system of
ΛA, which is a 3 × 19-word blocks set. For conve-
nience, each element in A is described by its decimal
code expression, such as (185926�430614�364980)
that refers to the 3 × 19-word block



0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0
0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0
0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0


,

where the integers are respectively decimal code
expressions of three lines string.

In a nutshell, directed graph theory provides
a powerful tool for studying the infinite config-
urations. A fundamental method for constructing
finite shifts starts with a finite, directed graph and
produces the collection of all bi-infinite walks (i.e.
strings of edges) on the graph. A graph G(V,E) con-
sists of a finite set V of vertices (or states) together
with a finite set E of edges. ΛA can be described
by a finite directed graph GA, where each vertex is

a 3 × 20-block in A. Each edge e ∈ E starts at a
block denoted by (X3×20) ∈ A and terminates at
the string (X ′

3×20) ∈ A if and only if


x
(1)
i+1 · · · x

(1)
i+18 x

(1)
i+19

x
(2)
i+1 · · · x

(2)
i+18 x

(2)
i+19

x
(3)
i+1 · · · x

(3)
i+18 x

(3)
i+19




=




x
(1)′
i x

(1)′
i+1 · · · x

(1)′
i+18

x
(2)′
i x

(2)′
i+1 · · · x

(2)′
i+18

x
(3)′
i x

(3)′
i+1 · · · x

(3)′
i+18




.

One can represent each element of ΛA as a certain
path on the graph GA. The entire bi-infinite walks
on the graph constitute the closed invariant subsys-
tem ΛA. The finite directed graph ΛA, is shown in
Fig. 10.
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Fig. 10. Graph representation for the subsystem ΛA of glider e.
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It can be extrapolated accurately that the finite
directed graph GA only consists of the different
cycles. A cycle is a path that starts and terminates
at the same vertex. When one cycle has repeated
vertices, it is called the reducible cycle; otherwise,
it is called the irreducible cycle. Any cycle can
be compounded by the irreducible cycle. And the
period with period points of F on ΛA is the length
of the cycle. The irreducible cycle can produce the
irreducible period point of F . As the length of irre-
ducible cycle is less than the number of vertices, F
has finite different periods. It is of interest that the
irreducible cycles actually define a series of minimal
sets M of ΛA. The minimal sets imply the smallest
subsystems of ΛA, which are endowed with simple
dynamical properties. Then, F 10|M is topologically
transitive, yet has zero topological entropy.

Let Ŝ = {r0, r1, . . . , r259, r260} be a new sym-
bolic set, where ri, i = 0, . . . , 260, stand for ele-
ments of A respectively. Then, ri = (bi

0b
i
1 · · · bi

18b
i
19)

are 3 × 20 matrix and corresponding column vec-
tors of ri are expressed as bi

0, b
i
1, . . . , b

i
19, which only

contain eight different statuses, such as (0, 0, 0)T ,
(0, 0, 1)T , (0, 1, 0)T , (0, 1, 1)T , (1, 0, 0)T , (1, 0, 1)T ,
(1, 1, 0)T , (1, 1, 1)T . Then, one can construct a new
symbolic space ŜZ on Ŝ. Denote by B = {(rirj) |
ri = (bi

0b
i
1 · · · bi

18b
i
19), rj = (bj

0b
j
1 · · · bj

18b
j
19) ∈ Ŝ,

∀ 1 ≤ p ≤ 19 s.t. bi
p = bj

p−1}. Furthermore, the
two-order subshift ΛB of σL is defined by ΛB =
{r = (· · · , r−1, r

∗
0, r1, · · ·) ∈ ŜZ | ri ∈ Ŝ, (ri, ri+1) ≺

B,∀ i ∈ Z}. Therefore, it is easy to calculate the
transition matrix D of the subshift ΛB. The matrix
D is positive if all of its entries are non-negative,
irreducible if ∀ t, i, there exist n such that Dn

ti > 0,
and aperiodic if there exists N , such that Dn

ti > 0,
n > N , ∀ t, i. ΛB is topologically mixing if and only
if D is irreducible and aperiodic. In addition, the
transition matrix D is relatively large (the order of
D is 261). Therefore, we only list the indices (i, j)
of nonzero elements.

D = {(1, 2), (1, 55), (1, 173), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (7, 126), (7, 240), (8, 9), (9, 10), (10, 11),

(11, 12), (12, 13), (13, 14), (13, 78), (14, 15), (15, 16), (16, 17), (17, 18), (18, 19), (19, 20), (20, 21),

(20, 150), (21, 22), (21, 33), (22, 23), (23, 24), (24, 25), (25, 26), (26, 27), (26, 102), (27, 28), (28, 29),

(29, 30), (30, 31), (31, 32), (32, 1), (33, 34), (34, 35), (35, 36), (36, 37), (37, 38), (38, 39), (39, 40), (40, 41),

(41, 42), (42, 43), (43, 44), (44, 45), (45, 46), (46, 47), (47, 48), (48, 49), (49, 50), (50, 51), (51, 52), (52, 53),

(53, 54), (54, 55), (55, 56), (56, 57), (57, 58), (58, 59), (59, 60), (60, 61), (61, 62), (62, 63), (63, 64), (64, 65),

(65, 66), (66, 67), (67, 68), (68, 69), (69, 70), (70, 71), (71, 72), (72, 73), (73, 74), (74, 75), (75, 76), (76, 77),

(77, 18), (78, 79), (78, 195), (79, 80), (80, 81), (81, 82), (82, 83), (83, 84), (84, 85), (85, 86), (86, 87),

(87, 88), (88, 89), (89, 90), (90, 91), (91, 92), (92, 93), (93, 94), (94, 95), (95, 96), (96, 97), (97, 98), (98, 99),

(99, 100), (100, 101), (101, 31), (102, 103), (102, 218), (103, 104), (104, 105), (105, 106), (106, 107),

(107, 108), (108, 109), (109, 110), (110, 111), (111, 112), (112, 113), (113, 114), (114, 115), (115, 116),

(116, 117), (117, 118), (118, 119), (119, 120), (120, 121), (121, 122), (122, 123), (123, 124), (124, 125),

(125, 12), (126, 127), (127, 128), (128, 129), (129, 130), (130, 131), (131, 132), (132, 133), (133, 134),

(134, 135), (135, 136), (136, 137), (137, 138), (138, 139), (139, 140), (140, 141), (141, 142), (142, 143),

(143, 144), (144, 145), (145, 146), (146, 147), (147, 148), (148, 149), (149, 25), (150, 151), (151, 152),

(152, 153), (153, 154), (154, 155), (155, 156), (156, 157), (157, 158), (158, 159), (159, 160), (160, 161),

(161, 162), (162, 163), (163, 164), (164, 165), (165, 166), (166, 167), (167, 168), (168, 169), (169, 170),
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(170, 171), (171, 172), (172, 5), (173, 174), (174, 175), (175, 176), (176, 177), (177, 178), (178, 179),

(179, 180), (180, 181), (181, 182), (182, 183), (183, 184), (184, 185), (185, 186), (186, 187), (187, 188),

(188, 189), (189, 190), (190, 191), (191, 192), (192, 193), (193, 194), (194, 77), (195, 196), (196, 197),

(197, 198), (198, 199), (199, 200), (200, 201), (201, 202), (202, 203), (203, 204), (204, 205), (205, 206),

(206, 207), (207, 208), (208, 209), (209, 210), (210, 211), (211, 212), (212, 213), (213, 214), (214, 215),

(215, 216), (216, 217), (217, 31), (218, 219), (219, 220), (220, 221), (221, 222), (222, 223), (223, 224),

(224, 225), (225, 226), (226, 227), (227, 228), (228, 229), (229, 230), (230, 231), (231, 232), (232, 233),

(233, 234), (234, 235), (235, 236), (236, 237), (237, 238), (238, 239), (239, 11), (240, 241), (241, 242),

(242, 243), (243, 244), (244, 245), (245, 246), (246, 247), (247, 248), (248, 249), (249, 250), (250, 251),

(251, 252), (252, 253), (253, 254), (254, 255), (255, 256), (256, 257), (257, 258), (258, 259), (259, 260),

(260, 261), (261, 23)}.
Proposition 2. The nonwandering set

Ω(F 10|ΛA) = ΛA.

Proof. The elements of Dn are marked as Dn
i,j ,

1 ≤ i, j ≤ 261. Here each Dn
i,j shows the number

of all the paths from vertex vi to vertex vj whose
length is n. Thus, Dn

i,i is the number of all cycles
of ith vertex with length n. As Dn

i,i is positive for
n = 425, it is easy to verify that each vertex has a
particular cycle. �

Proposition 3. F 10|ΛA is topologically transitive.

Proof. Here σL is topologically transitive on ΛA if
the transition matrix D is irreducible. Further, the
irreducibility of D indicates that D+I is aperiodic,
where I is the 261 × 261 identity matrix. Mean-
while, it is easy to verify that (D + I)n is positive
for n ≥ 75. Hence, F 10 is topologically transitive
on ΛA. �

Proposition 4. The topological entropy of F 10|ΛA
is positive.

Proof. Let ρ(D) be the maximum positive real root
λ∗ of characteristic equation of D. The characteris-
tic equation is

−λ130(λ131 − λ99 − 10λ92 − 40λ46 − 32) = 0.

The topological entropy of σL on ΛA equals
log ρ(D) = 0.0667711. �

Proposition 5. F 10|ΛA is topologically mixing.

Proof. A two-order subshift of finite type is topo-
logically mixing if and only if its transition matrix
is irreducible and aperiodic. Meanwhile, it is easy to
verify that Dn is positive for n ≥ 856. This implies
that D is irreducible and aperiodic. �

Theorem 2. F 10|ΛA is chaotic in the sense of both
Li–Yorke and Devaney.

Proof. The positive topological entropy implies
chaos in the sense of Li–Yorke. Meanwhile, both
the chaos in the sense of Devaney and in the
sense of Li–Yorke can be deduced from topological
mixing. �

Remark 4.2. As a result, the dynamics of extant
gliders can be analyzed and their dynamical char-
acteristics are explored by the above method.

5. Concluding Remarks

Motivated by the cited works, HCAM rule is con-
ceived when the memory function (τ = 3) of ECAM
rule is a concrete ECA rule. It is of interest in that a
multitude of HCAM rules endowed with newfound
and strong nonlinear spatiotemporal patterns are
discovered by computer simulations and empirical
observations. To cite a concrete case, HCAM(43, 74)
have a host of gliders and complicated glider colli-
sions. After classifying and coding the gliders that
frequently occurred in HCAM(43, 74), we describe
their collisions by introducing ether factor and
glider factors.
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Furthermore, through exploiting the math-
ematical definition of HCAM, we preliminarily
explore an analytical method on the discussion
of the symbolic dynamics of the gliders in
HCAM(43, 74). Based on the directed graph rep-
resentation and transition matrix, the evolution
function of HCAM(43, 74) possesses the positive
topological entropy and is topologically mixing on
one subsystem of glider e. From the extant and new-
found gliders, it is inferred that there exist many
more chaotic subsystems. The method presented in
this paper is also applicable to other HCAMs. In
addition, the future work will be devoted to prov-
ing that HCAM(43, 74) is universal by simulating a
cyclic tag system [Cook, 2004; Rendell, 2011, 2013].
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Appendix A

The Properties of Remainder Gliders

In the following, the properties of remainder gliders are also presented.

Fig. 11. The spatiotemporal patterns of other gliders.
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Table 3. Characterizations of OGs and DCGs in Fig. 11.

Glider Velocity With Glider Velocity With

2b −1/5 9–10 j〈7〉 4/12 8–14
3b −1/5 10 3j〈7〉 4/12 13–19
2c −1/5 8 ji 4/12 11–15
2c2 2e 2b −1/5 34–35 j 3i 4/12 16–22
2c2 a −1/5 19–20 2k 4/12 10–16
3c −1/5 8–9 k〈5〉 4/12 16–22
4c −1/5 9–10 ki 4/12 11–17

c 2c3 −1/5 31–32 k 2i 4/12 17–23
2d −1/5 6–7 l〈2〉 4/12 7–13
3d −1/5 7–8 l〈3〉 4/12 9–13
7d −1/5 10–11 l〈3〉 i 4/12 12–18
2d〈2〉 −1/5 9–10 l〈4〉 4/12 7–13
3d〈2〉 −1/5 10–11 l〈5〉 i 4/12 9–15
4d〈2〉 −1/5 11–12 2l〈6〉 4/12 6–12
7d〈2〉 −1/5 13–14 l〈7〉 4/12 8–14

d〈2〉 2c −1/5 16–17 l〈7〉 i 4/12 14–20
2e −2/10 7–8 l〈8〉 4/12 7–13
3e −2/10 7–8 l〈10〉 4/12 9–13
2i 4/12 6–12 l〈11〉 4/12 11–17
3i 4/12 9–15 l〈13〉 4/12 14–20
3i i 4/12 16–19 l〈14〉 4/12 10–16

iii 4/12 17–23 l〈16〉 4/12 12–16

iij 4/12 21–27 m〈2〉 4/12 9–15

iij〈2〉 4/12 19–25 m〈3〉 4/12 10–16

ij 4/12 11–15 m〈4〉 4/12 11–17

i k 4/12 13–19 m〈5〉 4/12 11–15

j〈2〉 4/12 5–11 m〈7〉 4/12 7–13

j〈2〉 i 4/12 11–17 m〈8〉 4/12 12–16

j〈3〉 4/12 7 m〈8〉 2i 4/12 19–25

j〈4〉 4/12 4–6 m〈8〉 2i i 4/12 28–32

j〈4〉 i 4/12 8–14 m〈8〉 3i i 4/12 29–35

j〈6〉 4/12 7–13
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Table 4. Decimal expressions of glider factors in Fig. 11.

Glider Factor With Decimal Expression

[2b] 22 (3453510�2922518�2368948)

[3b] 42 (3612257890886�3061678888982�2486086067636)

[2c] 40 (903064473158�765419721238�621521516980)

[2c2 2e 2b] 41 (1952973737542�1549335138838�1531654551988)

[2c2 a] 39 (451513568838�382714647062�310759766452)

[3c] 28 (220474950�186872342�151738804)

[4c] 16 (60998�45590�47540)

[c 2c3] 32 (3527601734�2989978134�2427828660)

[2d] 32 (3527595462�2989978134�2427818292)

[3d] 20 (863686�730646�592180)

[7d] 36 (56441531846�47838754326�38845102388)

[2d〈2〉] 16 (60998�44566�45492)

[3d〈2〉] 36 (56441530950�47838752278�38845100212)

[4d〈2〉] 24 (13823558�11693590�9482676)

[7d〈2〉] 20 (978502�749078�766388)

[d〈2〉 2c] 36 (56440925766�47839407638�38845239732)

[2e] 27 (110236230�93436182�75869364)

[3e] 15 (30278�23446�23988)

[2i] 32 (3527595590�2989920790�2427818164)

[3i] 16 (54854�45590�37044)

[3i i] 32 (3527857734�2989928982�2427752628)

[iii] 48 (231184504377926�195947451036182�159109508075700)

[iij] 47 (115592245989958�97973716824598�79554743210164)

[ii j〈2〉] 31 (1749209670�1486270998�1211470004)

[ij] 31 (1763725894�1494880790�1213895092)

[i k] 39 (451532214854�382709445142�310760542644)

[j〈2〉] 31 (1763797702�1494960278�1213909044)

[j〈2〉 i] 23 (6890182�5835286�4774836)

[j〈3〉] 39 (451532234822�382709858838�310760755380)

[j〈4〉] 23 (6889542�5839382�4741812)

[j〈4〉 i] 39 (451532234822�382709864982�310760757940)

[j〈6〉] 20 (860870�729238�590388)

[j〈7〉] 20 (854086�726550�591284)

1750082-26



June 20, 2017 14:22 WSPC/S0218-1274 1750082

Glider Collisions in Hybrid Cellular Automaton with Memory Rule(43, 74 )

Table 4. (Continued)

Glider Factor With Decimal Expression

[3j〈7〉] 44 (14449031435846�12246715511318�9944343908532)

[ji] 31 (1763797062�1494964374�1213909044)

[ji〈3〉] 47 (115592252190278�97973724468758�79554745615540)

[2k] 23 (6886982�5833238�4722868)

[k〈5〉] 41 (1806128193606�1530839368214�1243042959796)

[ki] 23 (6889542�5833238�4772276)

[k 2i] 23 (6889542�4789782�4772276)

[l〈2〉] 32 (3527590470�2989928982�2427823284)

[l〈3〉] 29 (440948806�373741078�303478196)

[l〈3〉 i] 37 (112883025990�95677465110�77690181044)

[l〈4〉] 45 (28898063078982�24493431112214�19888688509364)

[l〈5〉 i] 21 (1722438�1458838�1193524)

[2l〈6〉] 37 (112883058758�95677466262�77690189364)

[l〈7〉] 40 (903064470214�765419721750�621521514676)

[l〈7〉 i] 40 (903064240838�765419722262�621521445044)

[l〈8〉] 26 (55118534�46717078�37934644)

[l〈10〉] 16 (49734�46614�41140)

[l〈11〉] 18 (219206�185878�148916)

[l〈13〉] 40 (903064487494�765419722262�621521451060)

[l〈14〉] 42 (3612257880134�3061678888598�2486086059572)

[l〈16〉] 28 (220472006�186866198�151722932)

[m〈2〉] 16 (42054�44566�180)

[m〈3〉] 35 (28220763846�23919329302�19422513332)

[m〈4〉] 43 (7224477013574�6123351872022�4972139811252)

[m〈5〉] 27 (110191174�93402646�75505844)

[m〈7〉] 13 (4678�4246�1460)

[m〈8〉] 32 (3527576646�2989917718�2427803060)

[m〈8〉 2i] 32 (3527576646�2987820566�2427803060)

[m〈8〉 2i i] 48 (231184437251142�195947985798678�159109491283380)

[m〈8〉 3i i] 48 (231184504456774�195947985658390�159105196241076)
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Appendix B

Spatiotemporal Patterns of HCAM Rules

Several complex spatiotemporal patterns of some concrete HCAM rules are presented as follows:
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