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Abstract. In this research, we explain and show how a chaotic system
displays non-trivial behavior as a complex system. This result is reached
modifying the chaotic system using a memory function, which leads to a
new system with elements of the original function which are not evident
in a first step. We proof that this phenomenology can be apprehended
selecting a typical chaotic function in the domain of elementary cellular
automata to discover complex dynamics. By numerical simulations, we
demonstrate how a number of gliders emerge in this automaton and how
some controlled subsystems can be designed within this complex system.
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1 Preliminaries

As far as we know a classification scheme of complex systems is missing,
although, in the case of elementary cellular automata, several approaches have
been described in recent decades. Nevertheless, this is a difficult problem that is
initially determined as an undecidable problem in the context of the theory of
cellular automata [9]. However, several approaches have been considered (we can
refer for example to [1,3,12,17,31] and references cited therein). These researches
show that, to date, all approaches using elementary cellular automata, do not
match, for more details, see [14].

In this paper, we study a classic chaotic elementary cellular automaton and,
using a memory function, we describe elements of non-trivial behaviour which
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emerge as patterns. The last are named gliders, particles, waves, or mobile
self-localizations. This non-trivial behaviour is qualified as complex. Specialized
and historic books recommended to introduce to complex systems theory are
[4–6,19,21]. For cellular automata theory, we refer to [1,18,27,29].

Here, we study a particular case with elementary cellular automaton rule
126, classified by Wolfram as a chaotic rule in [29,30]. Reviewing and composing
the original function with a memory function we will discover non-trivial pat-
terns. The original study about this analysis was published in [15]. This way, the
present paper is an extension on its controllability and codification of gliders in
the evolution rule with memory and how scale complex its behaviour by glider
collisions. The paper has the next structure. Section two introduces basic con-
cepts. Section three displays a description of rule 126 and its chaotic behaviour.
Section four explains how works a memory function in cellular automata. Section
five shows the non-trivial behaviour in rule 126 with memory.

1.1 Basic Notation

One-dimensional cellular automata is represented by an array of cells xi where
i ∈ Z and each x takes a value from a finite alphabet Σ. Thus, a sequence
of cells {xi} of finite length n describes a string or global configuration c on
Σ. The set of finite configurations will be expressed as Σn. An evolution is
comprised by a sequence of configurations {ci} produced by the mapping Φ :
Σn → Σn; thus the global relation is symbolized as: Φ(ct) → ct+1, where t
represents time and every global state of c is defined by a sequence of cell states.
The global relation is determined over the cell states in configuration ct updated
at the next configuration ct+1 simultaneously by a local function ϕ as follows:
ϕ(xt

i−r, . . . , x
t
i, . . . , x

t
i+r) → xt+1

i .
Wolfram represents one-dimensional cellular automata with two parameters

(k, r), where k = |Σ| is the number of states, and r is the neighbourhood radius.
This way, elementary cellular automata domain is defined by parameters (2, 1).
There are Σn different neighbourhoods (where n = 2r + 1) and kk

n

distinct
evolution rules. The evolutions in this paper have periodic boundary conditions.

Conventional cellular automata are ahistoric (memoryless): i.e., the new state
of a cell depends on the neighbourhood configuration solely at the preceding
time step of ϕ. Thus, cellular automata with memory can be considered as an
extension of the standard framework of cellular automata where every cell xi is
allowed to remember some period of its previous evolution. Basically memory is
based on the state and history of the system, thus we design a memory function φ,
as follows: φ(xt−τ

i , . . . , xt−1
i , xt

i) → si, such that τ < t determines the backwards
degree of memory and each cell si ∈ Σ is a function of the series of states in cell
xi up to time-step t − τ . Finally to execute the evolution we apply the original
rule again as follows: ϕ(. . . , sti−1, s

t
i, s

t
i+1, . . .) → xt+1

i .
In cellular automata with memory, while the mapping ϕ remains unaltered, a

historic memory of past iterations is retained by featuring each cell as a summary
of its previous states; therefore cells canalize memory to the map ϕ. As an
example, we can take the memory function φ as a majority memory: φmaj → si,
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where in case of a tie given by Σ1 = Σ0 in φ, we shall take the last value
xi. So φmaj represents the classic majority function for three variables [20] on
cells (xt−τ

i , . . . , xt−1
i , xt

i) and defines a temporal ring before calculating the next
global configuration c. In case of a tie, it is allowed to break it in favor of zero
if xτ−1 = 0, or to one whether xτ−1 = 1.

The representation of a elementary cellular automata with memory is given
as follows: φCARm:τ , where CAR represents the decimal notation of a particular
elementary cellular automata rule andm the kind of memory given with a specific
value of τ . Thus, the majority memory (maj) working in elementary cellular
automaton rule 126 checking tree cells (τ = 3) of history is simply denoted as
φR126maj:3.

Note that memory is as simple as any cellular automata, and that the global
behaviour produced by the local rule is totally unpredictable, it can lead to emer-
gent properties and so be complex. Memory functions were developed and exten-
sively studied by Sanz in [24–26]. Memory in elementary cellular automata have
been studied, showing its potentiality to report complex behaviour from chaotic
systems and beyond in [11,12,16], and recently in [7] authors have included
hybrid versions. Thus, we can conjecture that a memory function can report
complex behaviour as follows: fchaos(φ) → fcomplex.

2 Elementary Cellular Automaton Rule 126

The local-state transition function ϕ corresponding to rule 126 displays a high
concentration of states 1s. This way, ϕR126 = {1 if 110, 101, 100, 011, 010, 001; 0
if 111, 000} .

Rule 126 has a chaotic global behaviour typical from class III in Wolfram’s
classification [29]. In ϕR126 we can easily recognize an initial high probability
of alive cells, i.e. cells in state ‘1’; with a 75% to appear in the next time and,
complement of only 25% to get a state 0.

Figure 1 shows these cases in typical snapshots of rule 126. Evolving from
a single cell in state ‘1’ yield a patters like a Sierpinski triangle (Fig. 1a).
From a 50% random initial configuration, we can see an unordered evolution

Fig. 1. Dynamics in elementary cellular automaton rule 126. (a) Sierpinski triangle is
the evolution in its global dynamics from a single cell in state 1. (b) Second snapshot
is calculated from a random initial density to 50%. Both space-time diagrams evolve
on a ring of 1,000 cells for 512 generations.
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without observing any recognizable pattern (Fig. 1b). Both evolutions induce
that evolution rule 126 display a chaotic global behaviour. To explore carefully a
lot of these properties we will analyze its basin of attractors in the next section.

2.1 Basins of Attraction

A basin (of attraction) field of a finite cellular automata is the set of basins of
attraction into which all possible states and trajectories will be organized by the
local function ϕ. The topology of a single basin of attraction may be represented
by a diagram, the state transition graph. Thus, the set of graphs composing the
field specifies the global behaviour of the system [27].

Fig. 2. Basin of attractors for rule 126 and a length of 20 cells.

Generally, a basin can also recognizes cellular automata with chaotic or com-
plex behaviour following previous results on attractors which has been reported
by Wuensche and Lesser in [27] for rings of length 2 to 15. Thus, Wuensche char-
acterizes the Wolfram’s classes as a basin classification for chaos and complexity
in [27].

The basin depicted in Fig. 2 shows the whole set of non-equivalent basins
in rule 126 for ring equal to 20 cells.1 Particularly in this basin we can see
that attractors have not long transients or long periodic attractors, but sev-
eral of them have low in-degree and low leaf density. A quick observation is
1 Basins and attractors were calculated with Discrete Dynamical System DDLab avail-
able from http://www.ddlab.org/.
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that these basin of attractors are symmetric in their leafs, that induce chaos
[8]. Moreover, at the same time we can see some non symmetric attractors and
some of them have moderate transients that could induce a non-trivial com-
plex behaviour inside the chaos. A study discussing particularly the complex
behaviour by graphs in elementary cellular automata is available in [13].

3 Dynamics Emerging with Memory

This section presents the results of selecting a majority memory (maj) with τ = 4
in rule 126 deriving a new function names φR126maj:4 [15]. Figure 3 displays an
evolution for the rule φR126maj:4, showing its complex behaviour.

Fig. 3. Complex behaviour emerging in rule 126 with memory, rule φR126maj:4. Initial
configuration 111001 in a ring of 1,000 cells to 1,000 times. The evolution is filtered to
get a better view of gliders and collisions. The universe of non-trivial patterns emerge
including stationary particles, gliders and several glider guns. Interesting collisions from
this initial condition include solitons, annihilations, reflexions, fusions and more. The
initial condition was selected intentionally to produce a non-symmetric evolution.

4 Collisions of Gliders

In this section, we have done a systematic analysis of multiple collisions of gliders
in φR126maj:4. The next table presents an equation for every collision and its
result. Figure 4 illustrates explicitly these simulations.
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Equation Result Equation Result Equation Result

e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + g2 (p1 ) + e1 (p1 )

0 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p1 ) + e1 (p1 )

s1 e1 (p2 ) + g1 (p3 )
2 +

e1 (p2 ) + g2 (p4 ) + e1 (p1 )

g1

e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + g2 (p2 ) + e1 (p2 )

g1 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p2 ) + e1 (p2 )

s1 e1 (p2 ) + g1 (p3 )
2 +

e1 (p2 ) + g2 (p5 ) + e1 (p2 )

g1

e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + g2 (p3 ) + e1 (p2 )

g3 + g3 e1 (p2 ) + g1 (p2 ) +

e1 (p2 ) + s1 (p1 ) + e1 (p1 )

s1 e1 (p1 ) + g1 (p4 )
2 +

e1 (p1 ) + g2 (p1 ) + e1 (p1 )

g1

e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + g2 (p4 ) + e1 (p1 )

g4 + g4 e1 (p2 ) + g1 (p2 ) +

e1 (p2 ) + s1 (p2 ) + e1 (p2 )

s1 e1 (p1 ) + g1 (p4 )
2 +

e1 (p1 ) + g2 (p2 ) + e1 (p2 )

g21

e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + g2 (p5 ) + e1 (p2 )

g2 e1 (p2 ) + g1 (p3 ) +

e1 (p1 ) + s1 (p1 ) + e1 (p1 )

s1 e1 (p1 ) + g1 (p4 )
2 +

e1 (p1 ) + g2 (p3 ) + e1 (p2 )

g3 + g3

e1 (p2 ) + g1 (p2 ) +

e1 (p2 ) + g2 (p1 ) + e1 (p1 )

g2 e1 (p2 ) + g1 (p3 ) +

e1 (p1 ) + s1 (p2 ) + e1 (p2 )

s1 e1 (p1 ) + g1 (p4 )
2 +

e1 (p1 ) + g2 (p4 ) + e1 (p1 )

g2

e1 (p2 ) + g1 (p2 ) +

e1 (p2 ) + g2 (p2 ) + e1 (p2 )

0 e1 (p1 ) + g1 (p4 ) +

e1 (p2 ) + s1 (p1 ) + e1 (p1 )

s1 e1 (p1 ) + g1 (p4 )
2 +

e1 (p1 ) + g2 (p5 ) + e1 (p2 )

g1

e1 (p2 ) + g1 (p2 ) +

e1 (p2 ) + g2 (p3 ) + e1 (p2 )

g1 e1 (p1 ) + g1 (p4 ) +

e1 (p2 ) + s1 (p2 ) + e1 (p2 )

s1 e1 (p2 ) + g1 (p5 )
2 +

e1 (p2 ) + g2 (p1 ) + e1 (p1 )

g1

e1 (p2 ) + g1 (p2 ) +

e1 (p2 ) + g2 (p4 ) + e1 (p1 )

g3 + g3 e1 (p2 ) + g1 (p5 ) +

e1 (p2 ) + s1 (p1 ) + e1 (p1 )

s1 e1 (p2 ) + g1 (p5 )
2 +

e1 (p2 ) + g2 (p2 ) + e1 (p2 )

g1

e1 (p2 ) + g1 (p2 ) +

e1 (p2 ) + g2 (p5 ) + e1 (p2 )

g4 + g4 e1 (p2 ) + g1 (p5 ) +

e1 (p2 ) + s1 (p2 ) + e1 (p2 )

s1 e1 (p2 ) + g1 (p5 )
2 +

e1 (p2 ) + g2 (p3 ) + e1 (p2 )

g21

e1 (p2 ) + g1(p3 ) +

e1 (p1 ) + g2 (p1 ) + e1 (p1 )

g4 + g4 e2 (p5 ) + g3 (p2 ) +

e1 (p2 ) + g4 (p2 ) + e2 (p5 )

s2 e1 (p2 ) + g1 (p5 )
2 +

e1 (p2 ) + g2 (p4 ) + e1 (p1 )

g3 + g3

e1 (p2 ) + g1 (p3 ) +

e1 (p1 ) + g2 (p2 ) + e1 (p2 )

g2 e1 (p1 ) + g3 (p4 ) +

e2 (p2 ) + s2 (p2 ) + e2 (p2 )

g4 e1 (p2 ) + g1 (p5 )
2 +

e1 (p2 ) + g2 (p5 ) + e1 (p2 )

g2

e1 (p2 ) + g1 (p3 ) +

e1 (p1 ) + g2 (p3 ) + e1 (p2 )

0 e1 (p1 ) + g1 (p1 )
2 +

e1 (p1 ) + g2 (p1 ) + e1 (p1 )

g2 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p1 ) +

e1 (p1 ) + g2 (p1 ) + e1 (p1 )

s1

e1 (p2 ) + g1 (p3 ) +

e1 (p1 ) + g2 (p4 ) + e1 (p1 )

g1 e1 (p1 ) + g1 (p1 )
2 +

e1 (p1 ) + g2 (p2 ) + e1 (p2 )

g1 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p1 ) +

e1 (p1 ) + g2 (p2 ) + e1 (p2 )

s1

e1 (p2 ) + g1 (p3 ) +

e1 (p1 ) + g2 (p5 ) + e1 (p2 )

g3 + g3 e1 (p1 ) + g1 (p1 )
2 +

e1 (p1 ) + g2 (p3 ) + e1 (p2 )

g1 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p1 ) +

e1 (p1 ) + g2 (p3 ) + e1 (p2 )

s1

e1 (p1 ) + g1 (p4 ) +

e1 (p1 ) + g2 (p1 ) + e1 (p1 )

g3 + g3 e1 (p1 ) + g1 (p1 )
2 +

e1 (p1 ) + g2 (p4 ) + e1 (p1 )

g21 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p1 ) +

e1 (p1 ) + g2 (p4 ) + e1 (p1 )

s1

e1 (p1 ) + g1 (p4 ) +

e1 (p1 ) + g2 (p2 ) + e1 (p1 )

g4 + g4 e1 (p1 ) + g1 (p1 )
2 +

e1 (p1 ) + g2 (p5 ) + e1 (p2 )

g3 + g3 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p1 ) +

e1 (p1 ) + g2 (p5 ) + e1 (p2 )

s1

e1 (p1 ) + g1 (p4 ) +

e1 (p1 ) + g2 (p3 ) + e1 (p1 )

g2 e1 (p2 ) + g1 (p2 )
2 +

e1 (p2 ) + g2 (p1 ) + e1 (p1 )

g3 + g3 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p2 ) +

e1 (p2 ) + g2 (p1 ) + e1 (p1 )

s1

e1 (p1 ) + g1 (p4 ) +

e1 (p1 ) + g2 (p4 ) + e1 (p1 )

0 e1 (p2 ) + g1 (p2 )
2 +

e1 (p2) + g2 (p2) + e1 (p2)

g2 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p2 ) +

e1 (p2 ) + g2 (p2 ) + e1 (p2 )

s1

e1 (p1 ) + g1 (p4 ) +

e1 (p1 ) + g2 (p5 ) + e1 (p1 )

g1 e1 (p2 ) + g1 (p2 )
2 +

e1 (p2 ) + g2 (p3 ) + e1 (p2 )

g1 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p2 ) +

e1 (p2 ) + g2 (p3 ) + e1 (p2 )

s1

e1 (p2 ) + g1 (p5 ) +

e1 (p1 ) + g2 (p2 ) + e1 (p2 )

g3 + g3 e1 (p2 ) + g1 (p2 )
2 +

e1 (p2 ) + g2 (p5 ) + e1 (p2 )

g21 e1 (p1 ) + g1 (p1 ) +

e1 (p1 ) + s1 (p2 ) +

e1 (p2 ) + g2 (p5 ) + e1 (p2 )

s1

e1 (p2 ) + g1 (p5 ) +

e1 (p1 ) + g2 (p3 ) + e1 (p2 )

g4 + g4 e1 (p2 ) + g1 (p3 )
2 +

e1 (p2 ) + g2 (p1 ) + e1 (p1 )

g21 e1 (p1 )+g1 (p1 )+e1 (p1 )+

g2 (p1 ) + g4 (p4 ) + e2 (p2 )

g4

e1 (p2 ) + g1 (p5 ) +

e1 (p1 ) + g2 (p4 ) + e1 (p1 )

g2 e1 (p2 ) + g1 (p3 )
2 +

e1 (p2 ) + g2 (p2 ) + e1 (p2 )

g3 + g3 e1 (p1 )+g1 (p1 )+e1 (p1 )+

g2 (p2 ) + g4 (p5 ) + e2 (p3 )

g4

e1 (p2 ) + g1 (p5 ) +

e1 (p1 ) + g2 (p5 ) + e1 (p2 )

0 e1 (p2 ) + g1 (p3 )
2 +

e1 (p2 ) + g2 (p3 ) + e1 (p2 )

g2 e1 (p1 )+g1 (p1 )+e1 (p1 )+

g2 (p3 ) + g4 (p1 ) + e2 (p4 )

g4 +

g3 + g3
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Fig. 4. Codifying gliders in φR126m:τ to controlling collisions. Some examples are illus-
trated in this figure where we can see annihilations, self-organization, glider production,
and glider guns.

5 Conclusions

Memory is a useful tool to discover complexity in dynamical systems from
composed functions. In this paper, we have extended these results previously
to controller gliders in rule 126 systematically. The next step of our research
will design more complex constructions including computable devices by glider
collisions.
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