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Abstract

This paper presents the characterization of Rule 110 as a block substitution system of
three symbols; where their production rules, their inverse behaviors and forbidden words
are discussed. It is shown that every finite configuration can be partitioned in several block
and the dynamics of the automaton can be modeled and reproduced as a mapping among
blocks of the same size. The form of the blocks in the current configuration can be used for
knowing the number and size of the partitions in the next one, in this way the evolution
of random configurations, ether and gliders can be modeled.

1 Introduction

Elementary cellular automata (ECA) are defined by a binary set of states Σ = {0, 1} and a
neighborhood size 3 specifying a mapping ϕ : Σ3 → Σ known as the evolution rule of the
automaton. ECA’s have been widely studied since their simplicity and easy implementation
in computer programs, which allows to perform exhaustive analysis about the properties of
these automata given the small number of possible neighborhoods (8) and evolution rules (256)
produced by the previous parameters [1]. On the other hand, ECA’s exhibit all range of
behaviors; from fixed and periodic ones to chaotic and complex dynamics [2].
Different ECA’s have been analyzed for their capacity of producing interesting structures which
can interact in order to compose more complex reactions; in particular Rule 110 has been
proved by Cook to be Turing-complete [3]. Rule 110 is an ECA characterized by forming from
random initial conditions, interesting evolutions conforming a periodic background called ether
on which a finite set of periodic structures known as gliders may collide showing different results
(annihilations, solitons and productions of gliders by collisions) [6]. A typical evolution from a
random initial condition is depicted in Fig. 1; ether is displayed with different color to clarify
the gliders emerging from the initial chaotic reactions.
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Figure 1: Typical evolution of Rule 110 from a random configuration.

Rule 110 and other rules are widely analyzed by Wolfram in [8]; one aspect investigated in his
work is the application of different discrete and emergent systems for simulating ECA’s.
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Figure 2: System of gliders in Rule 110.

Dynamics in Rule 110 is concentrated mainly on a wide variety of kinds of gliders, extensions
and combinations of them. We can handle packages of them in one or several phases; thus
notation nA means n copies of the A glider and not a package of An gliders. Fig. 2 lists all
known gliders so far both in their basic representation and in packages or extensions as well.
These gliders have important characteristic useful to define distances, slopes, speeds, periods,
collisions, and phases. Of course, a huge number of reactions were constructed to get complex
constructions, as the cyclic tag system.
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Representation of gliders have been obtained from regular expressions [7], de Bruijn diagrams
[4], or by tiles assembly [5]. In fact, some techniques grown exponentially and therefore there
is not an automatic procedure to construct such patterns.
In this sense, the original part of this paper is to show that there exists a substitution system
with three symbols which is able to simulate the behavior of Rule 110; this substitution system
has special properties useful for characterizing and understanding the periodical behavior of
gliders and the conservation of information in soliton-like collisions.

2 Basic concepts

The one-dimensional cellular automaton Rule 110 is an ECA whose evolution rule ϕ is defined
in Table 1; the rule is enumerated as 110 taking the mappings defined by ϕ as a binary number.

Neighborhood 111 110 101 100 011 010 001 000
Evolution 0 1 1 0 1 1 1 0

Table 1: Evolution rule defining the ECA Rule 110

As Fig. 1 shows the evolution of Rule 110 is characterized by forming mobile structures (gliders)
on a periodic background (ether); this gliders can interact in such a way that a cyclic tag system
can be implemented (using millions of cells) in order to prove the universality of this automaton
[3]. In this way, Rule 110 is relevant for showing how simple systems based on local interactions
with no central control, are able to produce a complex global behavior. One notorious feature
is that the evolution rule covers the space with triangles outlined by the cells of the automaton,
internally defined by 0’s with margins delineated by 1’s; every triangle can be identified by the
length n of its largest sequence of 0’s. Some examples of triangles produced by Rule 110 are
depicted in Fig. 3 (as was defined in [4]).
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Figure 3: Family of triangles as tiles exemplifying the constructions produced by Rule 110.

The triangles in Fig. 3 show that there are two sequences defining their borders; B1 = 1 (if
and only if it is followed by a state 0) and B2 = 01 and, every sequence of n states between any
pair of borders can be considered as a string Sn; note that Sn may be equal to 0n or 1n. In
this way, every sequence in w ∈ Σ2 can be substituted by another one formed by the previously
described elements; and example of such substitution is presented in Fig. 4.
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11110110000100110101

S3B1B2B1S3B2S1B2B1B2B2

Sn B1 B2

State 0 State 1

· · ·

Figure 4: Sequence 11110110000100110101 and its substitution using Sn, B1 and B2.

3 Substitution system modeling Rule 110

The elements Sn, B1 and B2 can be used for implementing a substitution system in order to
simulate the dynamics of Rule 110; the production rules associated to these elements are the
following ones:

1. SnB1 → Sn−1B2

2. SnB2 → Sn−1B2B1

3. SnBα1Bα2 . . . Bαm
→ Sn−1B2SpB1 where p =

∑m
i=1 αi − 2

The rules are obtained following the behavior to form triangles specified by Rule 110; each
string Sn is decremented in one element after one step of the substitution system (Sn → Sn−1);
meanwhile borders B1 and B2 are used to close the margins of the triangles. In the production
rules we can see as well that a sequence of borders generates a new string; continuing the
formation of triangles in the evolution space. Figure 5 shows the normal evolution of Rule
110 from a random configuration and the evolution of the substitution system codifying the
initial condition with Sn, B1 and B2 and using the production rules applying periodic boundary
conditions in both cases.

a) Original b) Substitution system

Figure 5: Evolution of Rule 110 from a random initial condition taking both the original
evolution rule and the production rules of the substitution system.
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Figure 5 exposes that we have similar evolutions taking both the evolution rule or the production
rules, in fact the second case is one step forward in relation to the first one on forming the
different triangles in the evolution space. This feature can be explained taking into account
that the substitution of the initial condition is similar to perform a one-step evolution of the
automaton; thereby the dynamics of the substitution system is one step forward that the one
developed by the original evolution rule.
In the definition of every element in the substitution system, the associated subscript indicates
its length; in this way we can see that the production rules establish mappings between sequences
of elements of equal lengths; this indicates that the evolution of Rule 110 can be characterized
by mappings between blocks with the same number of states.
In the production rules; it is clear that a B1 is always produced preceded by a B2 element (with
or without a Sn in the middle). This indicates that the sequence B1SnB1 cannot be produced
by the evolution of the substitution system for each n ∈ N; this is the clearest forbidden
word in the substitution system. Now let us take the sequence SmB2SnB2SpB2, following the
production rules we have that the prefix SmB2SnB2 can be only produced by Sm+1B1Sn+1B1

which is not possible. Therefore another forbidden word is B2SnB2SpB2.
The previous forbidden words indicate that the substitution system is not reversible, because
there are sequences which cannot be yielded by the production rules; let us analyze in detail the
non-reversible part of the system. Since the production rules are established between sequences
with equal lengths, a naive approximation for reversing them can be achieved taking the inverse
direction as follows:

1. SnB2 → Sn+1B1

2. SnB2B1 → Sn+1B2

3. SnB2SpB1 → Sn+1Bα1Bα2 . . . Bαm
where

∑m
i=1 αi = p+ 2

The first two production rules are reversible because in both cases the mapping is bijec-
tive, however the third rule explains the non-reversibility of the system due to the sequence
Bα1Bα2 . . . Bαm

is not uniquely determined, that is, it can be specified in several ways; taking
into account that the forbidden words defined above cannot appear as part of it.

4 Block mapping modeling the behavior of Rule 110

The production rules defining the substitution systems are based in sequences such as SnBα1Bα2 . . . Bαm

for n ∈ N and αi ∈ {1, 2}. In this way every configuration w ∈ Σ∗ can be partitioned in blocks
with the previous specification, such that every block maps into another one with the same
length using the production rules. For instance, let us take the configuration 0001110111100011,
applying the evolution rule with periodic boundary conditions we obtain the configuration
0011011100100111. The same process can be obtained in a equivalent way codifying the first
configuration with the three elements of the substitution system, producing the initial sequence
S2B2S1B1B2S2B1S2B2B1; using the production rules we get the sequence S1B2B1B2S1B1S1B2S1B2S1B1,
the block partitions and mappings representing this process are depicted in Fig. 6, both with
symbols and in a graphical way for visualizing the mappings between blocks of identical size.
In order to continue with the evolution of the system, the blocks of the last sequence in
Fig. 6 must be reordered to be able of using again the production rules; thus the sequence
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S1B2B1B2S1B1S1B2S1B2S1B1

S2B2S1B1B2S2B1S2B2B1

⇒

Figure 6: The evolution of Rule 110 can be represented by a mapping between blocks of same
size.

S1B2B1B2S1B1S1B2S1B2S1B1 yields the new one B2S3B1B2B2B1B2B1B2, which describes
the configuration 0111110101101101 in the classical evolution of the automaton.

54321

4321

Figure 7: Reordering of the blocks partitioning the second sequence for yielding the next
evolution of the system, passing from 4 blocks in the first mapping to 5 blocks in the second
one.

Therefore the evolution of Rule 110 can be modeled by block mappings which are reordered
every step according to the formation and concatenation of symbols Bα in each new sequence; in
this way the number of partitions defining the mappings of the substitution system may change
as its dynamics advances in time. For instance, in Fig. 7 the first sequence is partitioned in 4
blocks (described by dotted black lines); after the mapping, the second one is partitioned in 5
blocks (depicted by dotted gray lines) to achieve the next evolution of the system. Note that
the last sequence delineates a single block if it is desired to continue with the evolution of the
automaton.
The size and number of the blocks in the next sequence can be determined analyzing the
composition of the partitions in the current one, following the subsequent conditions:

1. The number of blocks is decreased in one element in the next sequence for every block
S1Bα in the current one.

2. The number of blocks is increased in one element in the next sequence for every block
Bα1 . . . Bαm in the current one when

∑
αi > 2.
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3. For γ ∈ {1, 2} and n > 1, if there is a block SnBγSβ1Bα1Sβ2Bα2 . . . Sβm
Bν1...νp

such that
every βi = 1 and each αj ∈ {1, 2}, hence the block SnBγ grows as Sn−1Bω1 . . . Bωq

in the
next sequence such that

∑
ωk = (γ + 1) +

∑
(αj + 1) + 2.

4. If there is a sequence S1Bα1Bα2 . . . Bαm
such that every αi ∈ {1, 2}, hence this block is

decremented to SnB1 such that n =
∑
αi − 2.

Conditions 3 indicates that the size of a block is incremented in at least two units when it
has one or more S1 sequences on the left and, condition 4 explains that the size of a block is
decremented in two units when it is composed by several Bα symbols. This gaining or lost of
size provides the reordering of blocks; sometimes this behavior works as a shift of the initial
blocks in configurations with periodic boundary conditions, similar to the process characterizing
the dynamics of reversible one-dimensional cellular automata based on blocks permutations and
shifts [9].

5 Examples of the block mapping induced by the substi-
tution system

This section presents three cases of the block mapping modeling the dynamics of Rule 110,
the first one taking a random configuration, then using the configuration representing ether
and finally employing the configuration corresponding to the E glider. In these examples,
every block in a partition will have associated an integer a ∈ {−1, 0, 1} indicating if the block
decrements, does not change or increments the number of blocks in the next sequence according
to conditions 1 and 2. Let us notice that in the second case, a block does not affect the number
of blocks in the following sequence due to it does not hold conditions 1 and 2 or it fulfills both
conditions at the same time.

5.1 Block mapping for a random configuration

Let us take the configuration 11111101001010001101, this one can be represented in the substi-
tution system by S5B1B2S1B2B2S2B2B1B2. Ten evolutions of the block mapping system are
presented in Fig. 8, in this example there is associated an integer below each block indicating
how this one modifies the number of blocks partitioning the next sequence.

5.2 Block mapping for ether configuration

Let us take now the configuration 11111000100110 which evolves in the periodic background
called “ ether ” in Rule 110; with the substitution system this configuration is encoding as
S3B1S2B2S1B2B1B2. The block mapping associated to this sequence for five evolution steps
is depicted in Fig. 9.
Figure 9 shows that the block mapping acts as a shift in four positions to the left over the
initial sequence; this implies that a sequence is periodic in one step if for each of its blocks,
there is one or more contiguous blocks constructing it in the same sequence by the action of
the production rules; explaining the way in which the conservation of information works in the
substitution system in one iteration.
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Figure 8: Ten evolutions of the sequence 11111101001010001101 given by the substitution
system, the number, specification and reordering of blocks are described in every step.

5.3 Block mapping characterizing the E glider

Finally, let us take the configuration 0011011111111110001 which composes a periodic structure
(known as E glider); this configuration is codified in the substitution system as S1B2B1B2S8B1S2B2.
Figure 10 displays fifteen steps of the substitution system; showing how the blocks are reordered
to obtain a periodic behavior.
In this case, the block mapping acts as a shift of four places to the left after fifteen steps, also
it is clear that the number of blocks is not conserved in the evolution of the system, but at the
end, it is able to recovery the original blocks.

6 Final discussion

This paper has demonstrated that the dynamics of Rule 110 can be modeled as a mapping
between blocks of equal sizes, in this way the complexity in its behavior is given by the reordering
of blocks in very step when symbols Bα from different mappings are concatenated through the
evolution of the system. The number and size of the blocks depend on the symbols S1 and the
sequences Bα1Bα2 . . . Bαm ; in particular analyzing the production rules, we can see that each
symbol B2 runs from right to left in the evolution space generating a B1 every two steps and,
each B2 stops up to reach other B1 or B2 symbol.
In some cases the substitution system conserves the information of the original sequence, al-
though the number of blocks may vary in this process, thus we can explain the complex dynamics
of Rule 110 by a combination of block mappings and reorderings; meanwhile the block map-
pings provides order to the system, their reorderings induce the adequate degree of disorder to
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Figure 9: Five evolutions of the ether sequence using the substitution system, in this case the
behavior of the blocks is given by a left shift of four positions.

produce the complex behavior.
Further research include the analysis of the production rules as a dynamical system, in the
sense of formalizing its properties about periodic and transitive points and orbits, repetitivity,
ergodic and mixing properties; and how these features are able to obtain a deeper understanding
and classification of the dynamics of Rule 110. On the other hand, another subsequent work
may be the study of glider interactions and soliton-like collisions from the perspective of the
substitution system, in order to typify the lost, regeneration and preservation of information in
these kind of situations.
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