On Circular Growth of Life-Like )
Automata crec

Genaro J. Martinez, Andrew Adamatzky, Hector Zenil,
and Juan C. Seck-Tuoh-Mora

Abstract Growing circular patterns in nature is usually attributed to diffusion pro-
cesses (e.g. chemical systems), multiplication of organisms (e.g. bacterial colonies)
and diffusion-limited aggregation (e.g. crystal formation). The growth phenomenon
in cellular automata was originally conceptualized by John von Neumann, high-
lighting the connection between excitable and resting states. We present a Life-like
evolution rule capable of exhibiting growth similar to nearly perfect circular patterns,
and performing such approximations better than previous rules by same automaton
means. Results may be relevant to space-filling, numerical methods and packing
applications.
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1 Introduction

The concept of growth in cellular automata was considered by von Neumann from its
origins in [1]. One of the goals was to develop efficient ways of propagating signals
from excitable cells to resting cells in the universal constructor. A complementary
objective was to understand how to control the growth preventing the growing pattern
from transiting to chaos. In the present paper, we analyse a controllable growth in two-
dimensional binary-state isotropic-neighbourhood semi-totalistic cellular automa-
ton. Pioneer results simulating growth and nucleation with cellular automata were
presented by Margulos, Toffoli and Vichniac in [2]. Gravner and Griffeath developed
an extensive formalism and analytical approach to nucleation and growth in [3-5].
They also provided classifications of cellular automata based on type of their growth.
Complimentary results on circular pattern growth could also be found in [6].

The macroscopic behavior of a system can be understood by observing the collec-
tive dynamics of thousands or even millions of elements, each with its own density,
instead of focusing solely on the microscopic properties. This approach allows us to
observe and analyze a wide range of phenomena, such as growth, nucleation, dif-
fusion, and pattern formation, which arise in various scientific disciplines including
physics, chemistry, biology, and cosmology in general [9]. Examples of such phe-
nomena include the expansion of a chemical wave, crystal growth, pigmentation,
virus evolution, population dynamics, reactions involving a large number of parti-
cles while preserving energy locally and increasing volume, propagation of waves
in confined channels, and the expansion of a matter, see e.g. Fig. 1.

The paper is structured into three main sections. The first section provides an
overview of the nomenclature and fundamental concepts related to cellular automata.
The second and third sections delve into our experimental investigations, focusing on
different cellular automata rules. We present examples illustrating phenomena such
as growth, the emergence of simple waves, nucleation, and the collisions between
these entities. Furthermore, we analyze the general properties of our experiments by
conducting a comparative probabilistic analysis, incorporating the respective mean
field theory polynomials [10, 11].

2 Previous Work, Nomenclature and Basic Notation

In their work [12], the authors proposed a comprehensive and phenomenological
classification for two-dimensional cellular automata across a broad spectrum of semi-
totalistic cellular automata functions, utilizing Bays’ notation [13]. They discussed
a taxonomy and examined rules that exhibit complex behavior, including those that
generate intriguing patterns or demonstrate growth. Additionally, the paper explores
the utilization of precipitating chemical systems to approximate Voronoi [14], the
transmission of signals through channel-like structures to convey information or
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enable particle-based self-localization [15], as well as the construction of patterns
through specific initial conditions or particle propagation [12].

Fig. 1 a A snapshot of Belousov-Zhabotinsky medium, where oxidation wave-fronts are seen in
blue. See more details in [7]. b Snapshots of the growth of slime mould Physarum polycephalum
from several sites of inoculation. Snapshots are taken every 6h from top left to bottom right. See
more details in [8]
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Numerous authors have reported various patterns and interesting rules in different
orders of cellular automata [16—26] contributing to the body of research in this area.
In [27, 28], pattern formation such as discrete Turing patterns by means of Turing
machines were also explored.

Life-like rules are two-dimensional binary-state semi-totalistic cellular automata
defined by a quadruple as (Z>, ¥, u, f). Where Z is the set of integers and every
cell x; ; € 72 has eight neighbours, orthogonal and diagonal (isotropic or Moore’s
neighbourhood)andu(x) = {y € Z : x # y and |[x — y| < 1}, ¥ = {0, 1} the alpha-
bet, and f is a local transition function defined as follows:

+1 L if(x’:Oando}C € [61,602)]) 0r(x’=1anda)€ € [81,682])
X = fuixh)) = .
0, otherwise

(D
where o = |{y € u(x) : y' = 1}|, and 0y, 65, 8;, &, are some fixed parameters such
that 0 < 0, <6, <8 and 0 < §; < §, < 8. Every cell in this 2D regular lattice is
updated simultaneously each time.

The conventional notation can be extended to represent rules as two conditions
BO; ...03/S88; ...dg. By using this notation, a subset of these rules can be understood
as a discrete model of a quasi-chemical system with a substrate represented as 0" and a
reagent as 1°. In this interpretation, the intervals [0, 6;] denote the range of reactions
or associations between the substrate and the reagent, while [§;, §,] represents the
range of dissociation. Notably, this family of rules includes Conway’s Game of Life,
where the intervals [, d,] and [0}, 6,] correspond to the intervals of survival and
birth, respectively. It is worth mentioning that this notation aligns with Bay’s notation
for certain Life-like rules, expressed as R(Bmin, Bmax> Smin» Smax) [13].

3 Growth-Like Waves in Semi-Totalistic Cellular Automata

In 1985, Packard and Wolfram conducted a study on various totalistic binary two-
dimensional cellular automata, and Wolfram specifically identified an evolution rule
capable of constructing a circle pattern (see Fig.2). The details of this rule can be
found in [6], where the emergence of the circle pattern is illustrated during different
steps of evolution.

Figure 2 depicts the evolution of the Life-like rule B3/501234, which demon-
strates the ability to generate a circle pattern. The evolution commences with an
initial configuration consisting of a horizontal line comprising 7 cells in state 1. Over
the course of 73,206 generations, the pattern evolves and grows, resulting in a pop-
ulation of 1.0928157e+-9 cells in state 1. The pattern was simulated using the Golly
software.! Figure 2a show cases a symmetrical pattern at the center of the evolution,

Uhttps://golly.sourceforge.net.
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Fig. 2 Circular pattern constructed with the Life-like evolution rule B3/501234. The initial con-
figuration starts with a horizontal line of 7 cells in state 1. a Shows the central domain of evolution. b
Shows the evolution after 73,206 generations with a population of 1.0928157e+9 cells. ¢ Displays
the evolution of the initial string 10111 where the circular pattern cannot be produced, this evolution
is calculated for 49,995 generations with a population of 2.8 x 108 (patterns calculated with Golly)

giving rise to labyrinthine forms. Figure 2b highlights the emergence of the circular
pattern within the evolution space.

We introduce another evolution rule that exhibits similar capabilities to the previ-
ously discussed rule. The new rule is denoted as B3/5234 and demonstrates a high
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degree of robustness against perturbations. It has been observed that Wolfram’s rule,
as discussed by Gray several years ago, is sensitive to minor changes from a specific
initial condition, resulting in the destruction of the circle pattern and the emergence
of a peak at an extreme point (Fig. 2c, see [29]).

However, we have discovered a method to rectify this issue and restore the circular
pattern. By colliding two configurations with peaks positioned 180° apart and allow-
ing them to evolve for 10° generations, the circle pattern is successfully recovered.
Figure 3 illustrates different stages of the collision process, showcasing the fusion of
the two peaks and the subsequent restoration of their circular form. Additionally, a
close-up snapshot of the center of the collision is provided.

Regardless of the initial condition perturbations (mutations) applied, the Life-
like rule B3/5234 consistently maintains its circular pattern with a high frequency.
Table 1 displays the patterns associated with 1-bit and 2-bit mutations, where each
string corresponds to a specific pattern and its probability to emerge.

Figure 4 depicts the growth of a circular pattern originating from a line of 11 cells
in state 1, following the Life-like rule B3/S5234. This evolution occurs over a span of
153,075 generations, resulting in a population of 4.17114e+9 cells. In Fig. 4a, a static
and symmetrical pattern is observed at the center of the evolution, reminiscent of
the pattern produced by the rule B3/501234, which gives rise to labyrinthine forms.
Finally, Fig.4b illustrates the circle pattern that emerges after 153,075 generations,
although the circular form is attained within the initial 200 steps.

The evolution rules B3/501234 and B3/5234 exhibit chaotic behavior when ini-
tialized with random conditions, where the evolution displays a competition between
static patterns like labyrinths and undefined regions that gradually become stable over
subsequent iterations. By visualizing the evolution in a three-dimensional projection
achieved through the concatenation of two-dimensional planes, the regions of chaos
become more apparent through their evolutionary history. Figure5 illustrates this
type of projection, where the initial condition starts with a line of seven cells in state
1 and evolves for 360 generations. Figure 5a shows the projection along the z-axis,
while Fig. 5Sb presents the same evolution observed from the y-axis. These evolutions
were calculated using the software tool CAViewer.”

Elements of chaos can be discerned through mean-field theory. Gutowitz and
MclIntosh employed this approximation to identify global behavior by considering
the number of unfixed and fixed points over an extended period. Mean-field theory
enables the description of the statistical properties of cellular automata without ana-
lyzing individual rule evolution spaces. This approach treats the elements of a set
of symbols as independent and uncorrelated within the rule’s evolution space. By
studying the probabilities of states in the neighborhood in terms of the probability
of a single state (i.e., the state to which the neighborhood evolves), one can analyze
the probability of the neighborhood-state as a product of the probabilities of each
cell-state in the neighborhood. This analysis yields a polynomial of probabilities,
and the curve of this polynomial can be utilized to classify the rules, as proposed by
Mclntosh in [11] (Fig. 8).

2 https://www.comunidad.escom.ipn.mx/genaro/Cellular_Automata_Repository/Software.html.



On Circular Growth of Life-Like Automata 493

(d)
()
(h)

(8)

Fig. 3 A collision between two obtrusion patterns at 180°. The patterns are driven by the rule
B3/501234. The patterns recover their circular shape after 10° generations. The initial configu-
rations for left and right circles are 11101 and 10111 respectively, then obtrusion patterns start to
grow and eventually they collide at the center (shown in a close up). The colliding patterns merge
to recover the circular pattern which eventually will grow without any other perturbation
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Table 1 The evolution of various initial conditions in Life-like rules B3/501234 and B3/5234
results in the formation of circular patterns. In the case of rule B3/501234, we analyze lengths 5,
6, and 7 while for rule B3/5234, we analyze lengths 7 and 11. These initial conditions undergo
mutation in one or two cells, ultimately leading to the emergence of circular patterns in the respective
rules. Most high rates where a circle can emerge in this domain is 43% for a length 6 and 45%
for a length 11 respectively. However for length 7 the probability is 64% considering circles and
semi-circles, and 54% for the second rule

B3/S501234 B3/5234
string evolution string evolution
11111 Circle 1111111 Circle
10111 Peak 1011111 Disappear
11011 Still life 1101111 Still life
10011 Still life 1110111 Two oscillators
10101 Still life 1001111 Still life
111111 Circle 1100111 Oscillator
101111 Circle 1101011 Disappear
110111 Circle 1101101 Disappear
100111 Semi-circle 1110101 Oscillator
110011 Still life 1011101 Oscillator
101011 Still life 1000111 Oscillator
101101 Still life 1001001 Disappear
1111111 Circle 11111111111 Circle
1011111 Semi-circle 10111111111 Circle
1101111 Semi-circle 11011111111 Circle
1110111 Semi-circle 11101111111 Circle
1001111 Semi-circle 11110111111 Circle
1010111 Semi-circle 11111011111 Circle
1011011 Still life 10011111111 Circle
1011101 Still life 10101111111 Circle
1100111 Semi-circle 11001111111 Circle
1101011 Still life 11010111111 Disappear
1101101 Still life 11100111111 Oscillator
11101011111 Oscillator
11110011111 Still life
11110101111 Two still life
11101101111 Oscillator +- still life
11011101111 Oscillator 4 still life
10111101111 Two still life
10111011111 Semi-circle
10110111111 Disappear
10111110111 Semi-circle
10111111011 Disappear
10111111101 Circle
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(b)

Fig. 4 Using the Life-like evolution rule B3/5234, a circular pattern is formed. The initial config-
uration consists of a line containing 11 cells in state 1. In a, the center of the evolution is displayed.
Figure b presents the evolution after 153,075 generations, resulting in a population of 4.17114e+9
cells

Mean field polynomial defined by the evolution rule B3/501234 is:
Pt = piay +8pla) +84p)af +56piq; +70pq; 2)

where some unstable fixed points overlap the identity function in the interval 0.015
to 0.028 while a stable point is located in 0.463. Unstable fixed points display the
emergence of islands that grow quasi-circular but they are perturbed by an ample
number of still-life configurations that are highly frequent starting from these densi-
ties (see Fig. 6a, b. While the stable fixed point determines the final average density
for a long time, thus the final density is reached in very few dozens of steps (see
Fig.6c, d).
Mean-field polynomial defined by the evolution rule B3/5234 is:

piv1 = 84p}ql + 56p}q’ +70p2q; 3)

where an unstable fixed point is localized in 0.183. However, exploring initial con-
ditions starting at this value does not show interesting behaviour for exploring some
kind of nucleation; it will start with densities smaller than 0.03 which is close to
the fixed point at the origin. On these values, the state 0 is dominant with few still
life where some small perturbations begin an irreversible expansion (see Fig. 7a, b).
While the stable fixed point is localized in 0.447, thus starting random initial condi-
tions in this value reach its average population in a few steps (see Fig. 7c, d).
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Fig. 5 Using the Life-like
evolution rule B3/5234, a
circular pattern is created by
concatenating
two-dimensional planes to
obtain a three-dimensional
representation. The initial
configuration consists of a
line of 7 cells in state 1,
evolving over 360
generations. This projection
provides a visualization of
the evolutionary history
characterized by chaotic
behavior, with identifiable
non-stable regions present

(b)

G. J. Martinez et al.

Both curves for B3/501234 and B3/5234 across the diagonal and are not tan-
gential with respect to the identity, this property implies that both rules relate chaotic

global behaviour.
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Fig. 6 Value fixed points as initial conditions in Life-like rule B3/501234

4 Conclusions and Future Work

497

In this chapter, we present a distinct Life-like cellular automaton, namely rule
B3/5234, which possesses the capability to generate a circular pattern. So this
rule, complimentary to Wolfram’s rule, exhibits a best preservation of the
circular form and greater robustness against perturbations (mutations) from its initial
condition, see Fig.9. Both rules emerge with a similar construction resulting from
chaotic global behavior. However, Wolfram’s rule, when initiated with low densi-
ties, demonstrates a nucleation reaction wherein an explosion of chaos ensues. This
particular growth pattern is swiftly influenced by a substantial number of still-life
patterns that await activation (Fig.6). Nevertheless, the rule B3/5234 evolves on
very large stable regions dominated by the state O and the nucleation phenomenon

start with few active cells (Fig. 7).
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Fig. 8 Mean field curves for Life-like rules a B3/501234 and b B3/5234
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Circle Wolfram’s rule B3/S234

Fig. 9 This figure shows the cellular automata approximation to construct a circle. The left figure
is a typical perfect circle drawn with computer software. The center figure is the circle filling
approximation using Wolfram’s rule and, the right figure shows the circle filling calculus with the
function B3/5234 introduced in this paper

We believe that an application of this kind of work can be to space-filling and
packing problems where smaller objects have to be optimally distributed in larger
containers. Also relevant to problems of simulation and numerical methods for space
filling algorithms such as computing rendering or applications to micro and fluid
dynamics. Generalisations to three dimensions are possible by expanding the search
space to a fourth dimensional construction rule space to fill three dimensional spaces.
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