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Abstract Growing circular patterns in nature is usually attributed to diffusion pro-
cesses (e.g. chemical systems), multiplication of organisms (e.g. bacterial colonies) 
and diffusion-limited aggregation (e.g. crystal formation). The growth phenomenon 
in cellular automata was originally conceptualized by John von Neumann, high-
lighting the connection between excitable and resting states. We present a Life-like 
evolution rule capable of exhibiting growth similar to nearly perfect circular patterns, 
and performing such approximations better than previous rules by same automaton 
means. Results may be relevant to space-filling, numerical methods and packing 
applications. 
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1 Introduction 

The concept of growth in cellular automata was considered by von Neumann from its 
origins in [ 1]. One of the goals was to develop efficient ways of propagating signals 
from excitable cells to resting cells in the universal constructor. A complementary 
objective was to understand how to control the growth preventing the growing pattern 
from transiting to chaos. In the present paper, we analyse a controllable growth in two-
dimensional binary-state isotropic-neighbourhood semi-totalistic cellular automa-
ton. Pioneer results simulating growth and nucleation with cellular automata were 
presented by Margulos, Toffoli and Vichniac in [ 2]. Gravner and Griffeath developed 
an extensive formalism and analytical approach to nucleation and growth in [ 3– 5]. 
They also provided classifications of cellular automata based on type of their growth. 
Complimentary results on circular pattern growth could also be found in [ 6]. 

The macroscopic behavior of a system can be understood by observing the collec-
tive dynamics of thousands or even millions of elements, each with its own density, 
instead of focusing solely on the microscopic properties. This approach allows us to 
observe and analyze a wide range of phenomena, such as growth, nucleation, dif-
fusion, and pattern formation, which arise in various scientific disciplines including 
physics, chemistry, biology, and cosmology in general [ 9]. Examples of such phe-
nomena include the expansion of a chemical wave, crystal growth, pigmentation, 
virus evolution, population dynamics, reactions involving a large number of parti-
cles while preserving energy locally and increasing volume, propagation of waves 
in confined channels, and the expansion of a matter, see e.g. Fig. 1. 

The paper is structured into three main sections. The first section provides an 
overview of the nomenclature and fundamental concepts related to cellular automata. 
The second and third sections delve into our experimental investigations, focusing on 
different cellular automata rules. We present examples illustrating phenomena such 
as growth, the emergence of simple waves, nucleation, and the collisions between 
these entities. Furthermore, we analyze the general properties of our experiments by 
conducting a comparative probabilistic analysis, incorporating the respective mean 
field theory polynomials [ 10, 11]. 

2 Previous Work, Nomenclature and Basic Notation 

In their work [ 12], the authors proposed a comprehensive and phenomenological 
classification for two-dimensional cellular automata across a broad spectrum of semi-
totalistic cellular automata functions, utilizing Bays’ notation [ 13]. They discussed 
a taxonomy and examined rules that exhibit complex behavior, including those that 
generate intriguing patterns or demonstrate growth. Additionally, the paper explores 
the utilization of precipitating chemical systems to approximate Voronoi [ 14], the 
transmission of signals through channel-like structures to convey information or
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enable particle-based self-localization [ 15], as well as the construction of patterns 
through specific initial conditions or particle propagation [ 12]. 

Fig. 1 a A snapshot of Belousov-Zhabotinsky medium, where oxidation wave-fronts are seen in 
blue. See more details in [ 7]. b Snapshots of the growth of slime mould Physarum polycephalum 
from several sites of inoculation. Snapshots are taken every 6 h from top left to bottom right. See 
more details in [ 8]
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Numerous authors have reported various patterns and interesting rules in different 
orders of cellular automata [ 16– 26] contributing to the body of research in this area. 
In [ 27, 28], pattern formation such as discrete Turing patterns by means of Turing 
machines were also explored. 

Life-like rules are two-dimensional binary-state semi-totalistic cellular automata 
defined by a quadruple as .〈Z2,!, u, f 〉. Where . Z is the set of integers and every 
cell .xi, j ∈ Z2 has eight neighbours, orthogonal and diagonal (isotropic or Moore’s 
neighbourhood) and.u(x) = {y ∈ Z : x $= y and |x − y| ≤ 1},.! = {0, 1} the alpha-
bet, and . f is a local transition function defined as follows: 

. xt+1 = f (u(xt )) =
{
1, if (xt = 0 and σ t

x ∈ [θ1, θ2]) or (xt = 1 and σ t
x ∈ [δ1, δ2])

0, otherwise
(1) 

where .σ t
x = |{y ∈ u(x) : yt = 1}|, and .θ1, θ2, δ1, δ2 are some fixed parameters such 

that .0 ≤ θ1 ≤ θ2 ≤ 8 and .0 ≤ δ1 ≤ δ2 ≤ 8. Every cell in this 2D regular lattice is 
updated simultaneously each time. 

The conventional notation can be extended to represent rules as two conditions 
.Bθ1 . . . θ8/Sδ1 . . . δ8. By using this notation, a subset of these rules can be understood 
as a discrete model of a quasi-chemical system with a substrate represented as 0’ and a 
reagent as 1’. In this interpretation, the intervals.[θ1, θ2] denote the range of reactions 
or associations between the substrate and the reagent, while .[δ1, δ2] represents the 
range of dissociation. Notably, this family of rules includes Conway’s Game of Life, 
where the intervals .[δ1, δ2] and .[θ1, θ2] correspond to the intervals of survival and 
birth, respectively. It is worth mentioning that this notation aligns with Bay’s notation 
for certain Life-like rules, expressed as .R(Bmin, Bmax, Smin, Smax) [ 13]. 

3 Growth-Like Waves in Semi-Totalistic Cellular Automata 

In 1985, Packard and Wolfram conducted a study on various totalistic binary two-
dimensional cellular automata, and Wolfram specifically identified an evolution rule 
capable of constructing a circle pattern (see Fig. 2). The details of this rule can be 
found in [ 6], where the emergence of the circle pattern is illustrated during different 
steps of evolution. 

Figure 2 depicts the evolution of the Life-like rule .B3/S01234, which demon-
strates the ability to generate a circle pattern. The evolution commences with an 
initial configuration consisting of a horizontal line comprising 7 cells in state 1. Over 
the course of 73,206 generations, the pattern evolves and grows, resulting in a pop-
ulation of 1.0928157e. +9 cells in state 1. The pattern was simulated using the Golly 
software. 1 Figure 2a show cases a symmetrical pattern at the center of the evolution,

1 https://golly.sourceforge.net. 
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Fig. 2 Circular pattern constructed with the Life-like evolution rule .B3/S01234. The initial con-
figuration starts with a horizontal line of 7 cells in state 1. a Shows the central domain of evolution. b 
Shows the evolution after 73,206 generations with a population of 1.0928157e. +9 cells. c Displays 
the evolution of the initial string 10111 where the circular pattern cannot be produced, this evolution 
is calculated for 49,995 generations with a population of.2.8 × 108 (patterns calculated with Golly) 

giving rise to labyrinthine forms. Figure 2b highlights the emergence of the circular 
pattern within the evolution space. 

We introduce another evolution rule that exhibits similar capabilities to the previ-
ously discussed rule. The new rule is denoted as .B3/S234 and demonstrates a high
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degree of robustness against perturbations. It has been observed that Wolfram’s rule, 
as discussed by Gray several years ago, is sensitive to minor changes from a specific 
initial condition, resulting in the destruction of the circle pattern and the emergence 
of a peak at an extreme point (Fig. 2c, see [ 29]). 

However, we have discovered a method to rectify this issue and restore the circular 
pattern. By colliding two configurations with peaks positioned 180. ◦ apart and allow-
ing them to evolve for .105 generations, the circle pattern is successfully recovered. 
Figure 3 illustrates different stages of the collision process, showcasing the fusion of 
the two peaks and the subsequent restoration of their circular form. Additionally, a 
close-up snapshot of the center of the collision is provided. 

Regardless of the initial condition perturbations (mutations) applied, the Life-
like rule .B3/S234 consistently maintains its circular pattern with a high frequency. 
Table 1 displays the patterns associated with 1-bit and 2-bit mutations, where each 
string corresponds to a specific pattern and its probability to emerge. 

Figure 4 depicts the growth of a circular pattern originating from a line of 11 cells 
in state 1, following the Life-like rule.B3/S234. This evolution occurs over a span of 
153,075 generations, resulting in a population of 4.17114e+9 cells. In Fig. 4a, a static 
and symmetrical pattern is observed at the center of the evolution, reminiscent of 
the pattern produced by the rule.B3/S01234, which gives rise to labyrinthine forms. 
Finally, Fig. 4b illustrates the circle pattern that emerges after 153,075 generations, 
although the circular form is attained within the initial 200 steps. 

The evolution rules.B3/S01234 and.B3/S234 exhibit chaotic behavior when ini-
tialized with random conditions, where the evolution displays a competition between 
static patterns like labyrinths and undefined regions that gradually become stable over 
subsequent iterations. By visualizing the evolution in a three-dimensional projection 
achieved through the concatenation of two-dimensional planes, the regions of chaos 
become more apparent through their evolutionary history. Figure 5 illustrates this 
type of projection, where the initial condition starts with a line of seven cells in state 
1 and evolves for 360 generations. Figure 5a shows the projection along the .z-axis, 
while Fig. 5b presents the same evolution observed from the.y-axis. These evolutions 
were calculated using the software tool CAViewer. 2

Elements of chaos can be discerned through mean-field theory. Gutowitz and 
McIntosh employed this approximation to identify global behavior by considering 
the number of unfixed and fixed points over an extended period. Mean-field theory 
enables the description of the statistical properties of cellular automata without ana-
lyzing individual rule evolution spaces. This approach treats the elements of a set 
of symbols as independent and uncorrelated within the rule’s evolution space. By 
studying the probabilities of states in the neighborhood in terms of the probability 
of a single state (i.e., the state to which the neighborhood evolves), one can analyze 
the probability of the neighborhood-state as a product of the probabilities of each 
cell-state in the neighborhood. This analysis yields a polynomial of probabilities, 
and the curve of this polynomial can be utilized to classify the rules, as proposed by 
McIntosh in [ 11] (Fig. 8).

2 https://www.comunidad.escom.ipn.mx/genaro/Cellular_Automata_Repository/Software.html. 
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Fig. 3 A collision between two obtrusion patterns at 180. ◦. The patterns are driven by the rule 
.B3/S01234. The patterns recover their circular shape after .105 generations. The initial configu-
rations for left and right circles are 11101 and 10111 respectively, then obtrusion patterns start to 
grow and eventually they collide at the center (shown in a close up). The colliding patterns merge 
to recover the circular pattern which eventually will grow without any other perturbation
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Table 1 The evolution of various initial conditions in Life-like rules .B3/S01234 and . B3/S234
results in the formation of circular patterns. In the case of rule .B3/S01234, we analyze lengths 5, 
6, and 7 while for rule .B3/S234, we analyze lengths 7 and 11. These initial conditions undergo 
mutation in one or two cells, ultimately leading to the emergence of circular patterns in the respective 
rules. Most high rates where a circle can emerge in this domain is 43% for a length 6 and 45% 
for a length 11 respectively. However for length 7 the probability is 64% considering circles and 
semi-circles, and 54% for the second rule 
.B3/S01234 . B3/S234

string evolution string evolution 

11111 Circle 1111111 Circle 

10111 Peak 1011111 Disappear 

11011 Still life 1101111 Still life 

10011 Still life 1110111 Two oscillators 

10101 Still life 1001111 Still life 

111111 Circle 1100111 Oscillator 

101111 Circle 1101011 Disappear 

110111 Circle 1101101 Disappear 

100111 Semi-circle 1110101 Oscillator 

110011 Still life 1011101 Oscillator 

101011 Still life 1000111 Oscillator 

101101 Still life 1001001 Disappear 

1111111 Circle 11111111111 Circle 

1011111 Semi-circle 10111111111 Circle 

1101111 Semi-circle 11011111111 Circle 

1110111 Semi-circle 11101111111 Circle 

1001111 Semi-circle 11110111111 Circle 

1010111 Semi-circle 11111011111 Circle 

1011011 Still life 10011111111 Circle 

1011101 Still life 10101111111 Circle 

1100111 Semi-circle 11001111111 Circle 

1101011 Still life 11010111111 Disappear 

1101101 Still life 11100111111 Oscillator 

11101011111 Oscillator 

11110011111 Still life 

11110101111 Two still life 

11101101111 Oscillator.+ still life 

11011101111 Oscillator.+ still life 

10111101111 Two still life 

10111011111 Semi-circle 

10110111111 Disappear 

10111110111 Semi-circle 

10111111011 Disappear 

10111111101 Circle
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Fig. 4 Using the Life-like evolution rule.B3/S234, a circular pattern is formed. The initial config-
uration consists of a line containing 11 cells in state 1. In a, the center of the evolution is displayed. 
Figure b presents the evolution after 153,075 generations, resulting in a population of 4.17114e+9 
cells 

Mean field polynomial defined by the evolution rule .B3/S01234 is: 

.pt+1 = ptq8
t + 8p2t q

7
t + 84p3t q

6
t + 56p4t q

5
t + 70p5t q

4
t (2) 

where some unstable fixed points overlap the identity function in the interval . 0.015
to .0.028 while a stable point is located in .0.463. Unstable fixed points display the 
emergence of islands that grow quasi-circular but they are perturbed by an ample 
number of still-life configurations that are highly frequent starting from these densi-
ties (see Fig. 6a, b. While the stable fixed point determines the final average density 
for a long time, thus the final density is reached in very few dozens of steps (see 
Fig. 6c, d). 

Mean-field polynomial defined by the evolution rule .B3/S234 is: 

.pt+1 = 84p3t q
6
t + 56p4t q

5
t + 70p5t q

4
t (3) 

where an unstable fixed point is localized in .0.183. However, exploring initial con-
ditions starting at this value does not show interesting behaviour for exploring some 
kind of nucleation; it will start with densities smaller than .0.03 which is close to 
the fixed point at the origin. On these values, the state 0 is dominant with few still 
life where some small perturbations begin an irreversible expansion (see Fig. 7a, b). 
While the stable fixed point is localized in .0.447, thus starting random initial condi-
tions in this value reach its average population in a few steps (see Fig. 7c, d).
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Fig. 5 Using the Life-like 
evolution rule.B3/S234, a  
circular pattern is created by 
concatenating 
two-dimensional planes to 
obtain a three-dimensional 
representation. The initial 
configuration consists of a 
line of 7 cells in state 1, 
evolving over 360 
generations. This projection 
provides a visualization of 
the evolutionary history 
characterized by chaotic 
behavior, with identifiable 
non-stable regions present 

Both curves for .B3/S01234 and .B3/S234 across the diagonal and are not tan-
gential with respect to the identity, this property implies that both rules relate chaotic 
global behaviour.
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Fig. 6 Value fixed points as initial conditions in Life-like rule. B3/S01234

4 Conclusions and Future Work 

In this chapter, we present a distinct Life-like cellular automaton, namely rule 
.B3/S234, which possesses the capability to generate a circular pattern. So this 
rule, complimentary to Wolfram’s rule, exhibits a best preservation of the 
circular form and greater robustness against perturbations (mutations) from its initial 
condition, see Fig. 9. Both rules emerge with a similar construction resulting from 
chaotic global behavior. However, Wolfram’s rule, when initiated with low densi-
ties, demonstrates a nucleation reaction wherein an explosion of chaos ensues. This 
particular growth pattern is swiftly influenced by a substantial number of still-life 
patterns that await activation (Fig. 6). Nevertheless, the rule .B3/S234 evolves on 
very large stable regions dominated by the state 0 and the nucleation phenomenon 
start with few active cells (Fig. 7).



498 G. J. Martínez et al.

Fig. 7 Value fixed points as initial conditions in Life-like rule. B3/S234

Fig. 8 Mean field curves for Life-like rules a .B3/S01234 and b .B3/S234
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Fig. 9 This figure shows the cellular automata approximation to construct a circle. The left figure 
is a typical perfect circle drawn with computer software. The center figure is the circle filling 
approximation using Wolfram’s rule and, the right figure shows the circle filling calculus with the 
function.B3/S234 introduced in this paper 

We believe that an application of this kind of work can be to space-filling and 
packing problems where smaller objects have to be optimally distributed in larger 
containers. Also relevant to problems of simulation and numerical methods for space 
filling algorithms such as computing rendering or applications to micro and fluid 
dynamics. Generalisations to three dimensions are possible by expanding the search 
space to a fourth dimensional construction rule space to fill three dimensional spaces. 
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