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Abstract—We present computer models of nano-scale com-
puting circuits based on propagation of localised excitations
or defects in complexes of polymer chain rings. A cyclotron
automata are sets of rings of one-dimensional array of finite states
(cellular automata) which exhibits a wide range of travelling
localisations (gliders). When information (e.g. values of logical
variables) is encoded in the initial positions and velocity vectors of
the gliders the cyclotron automata are becoming power abstract
machines which execute high-performance computing. The com-
puting is based on collisions between the mobile localisations.
We present collisions that emulate basic types of interactions
between localisations typical for spatially-extended non-linear
media: fusion, particles, elastic collision, and soliton-like collision,
all they implement basic computing primitives. Mobile localisa-
tions in complex one-dimensional cellular automata are compact
sets of non-quiescent patterns translating along evolution space.
These non-trivial patterns can be coded as binary strings (regular
expressions) or symbols travelling along a one-dimensional ring,
interacting with each other and changing their states, or symbolic
values, as a result of interactions and computation.

Keywords—collider; collisions; beam routing; cellular au-
tomata; localisations; computability

I. INTRODUCTION

Unconventional computing — search for novel princi-
ples of efficient information processing and computation in
physical, chemical and biological systems [8] – approach its
state of maturity and started to sprout into numerous appli-
cation domains. Cytoskeleton computing on actin filaments is
amongst most prospective approaches: data-signals represented
by localisations (excitations, energy densities, ionic clouds, de-
fects) travelling along actin filaments implement computation
via collisions [7]. Thus actin filaments a role of nano-scale
collision-based computers.

A collision-based computer employs mobile compact finite
patterns and mobile self-localised excitations to represent
quanta of information in active non-linear mediums. Informa-
tion values, e.g. truth values of logical variables, are given
by either absence or presence of the localisations or other
parameters of the localisations. The localisations travel in
space and when collisions occur the result can be interpreted as
computation. Any part of the medium space can be used as a
wire. localisations can collide anywhere within a space sample,
there are no fixed positions at which specific operations occur,

nor location specified gates with fixed operations. The localisa-
tions undergo transformations, form bound states, annihilate or
fuse when they interact with other mobile patterns. Information
values of localisations are transformed as a result of collision.

Cellular automata (CA) are best mathematical machines to
represent nano-scale polymer chain computers because of their
architectural properties: array of finite state machines matches
array of polymer units [7]. CA models of collision-based
computing were introduced and extensively studied in [2]. In
this book Tommaso Toffoli has introduced the concepts of
symbol super collider [34].

In theoretical computer science there are many mod-
els of unconventional computing, which are based on pro-
cesses in spatially extended non-linear media with different
physics and non-classical logics. Most know examples include
the reversible computing [10], [30], conservative logic [14],
reaction-diffusion computers [5], quantum computers [15],
Physarum computers [6], cellular automata computers [1],
[16], [21], [33], [37], [26], optical or molecular computing
[3], solitons or competing patterns computing [17], [2], [23],
or hot ice computers [4].

Our previous results on CA collider-computers
were published in [26], [24] (Computer Sci-
entists Build Cellular Automaton Supercollider,
Technology Review, Published by MIT, May 25,
2011. http://www.technologyreview.com/view/424096/
computer-scientists-build-cellular-automaton-supercollider/).
In present paper, we consider a number of designs to code
localisations with different velocities and contact points. These
localisations are represented as a set of regular expressions
on a torus. Each localisation is coded as a regular expression
and initialised on specific initial conditions. The computation
is implemented via cyclical collisions on such a cyclotrons.

This computable device presented in the paper is inspired
by high-performance sub-micron digital technologies [13], [3],
[16], [33] and complex CA able of computation [31]; its logical
schemes are based on symbol super collider theory [34] with
an extension of the beams routing as a set of localisations [26].

The rest of the paper is organised as follows. Section
II gives a brief introduction to CA notations. Section III
introduces the concept of Toffoli colliders. Section IV shows
how to recognise mobile localisation in a cyclotron with CA.
Section V shows how basic computation can be done in the CA
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super-colliders. Outlines of further work are given in Section
VI.

mds

June 3, 2015

II. ELEMENTARY CELLULAR AUTOMATA

One-dimensional CA is an array of cells xi where i ∈ Z
(integer set) and each cell x takes a value from a finite
alphabet Σ. A sequence of cells {xi} of a finite length n
describes a string or global configuration c on Σ. A set of finite
configurations is expressed as Σn. An evolution is represented
by a sequence of configurations {ci} produced by the mapping
Φ : Σn → Σn; thus the global relation is symbolised as:

Φ(ct)→ ct+1 (1)

where t represents time and every global state of c is defined
by a sequence of cell states. The global relation is determined
over the cell states in configuration ct updated at the next
configuration ct+1 simultaneously by a local function ϕ as
follows:

ϕ(xt
i−r, . . . , x

t
i, . . . , x

t
i+r)→ xt+1

i . (2)

One-dimensional CA can be synthesised with two param-
eters (k, r) [36], where k = |Σ| is the number of states,
and r is the neighbourhood radius. This way, the class of
elementary CA (ECA) is defined by parameters (2, 1). There
are Σn different neighbourhoods (where n = 2r + 1) and kk

n

different evolution rules.

We consider CA with periodic boundary conditions. A
projection of these global states (rings) shows a better view
for localisation interactions.

III. TOFFOLI’S SYMBOLOGY

In the late 1970s Fredkin and Toffoli developed a concept
of a general-purpose computation based on ballistic interac-
tions between quanta of information that are represented by
abstract particles [34]. The Boolean states of logical variables
are represented by balls or atoms, which preserve their identity
when they collide with each other. They came up with the
idea of a billiard-ball model of computation, with underpinning
mechanics of elastically colliding balls and mirrors reflecting
the balls’ trajectories [21].

With similar principles Toffoli presents in [34] the concept
of symbol super collider. In this section, we will show its basic
operations.

The following basic functions with two input arguments u
and v can be expressed via collision between two localisations:

1) f(u, v) = c, fusion
2) f(u, v) = u + v, interaction and subsequent change

of state
3) fi(u, v) 7→ (u, v) identity, solitonic collision
4) fr(u, v) 7→ (v, u) reflection, elastic collision

To map Toffoli’s supercollider [34] onto a one-dimensional
CA we use the notion of an idealised localisation p ∈ Σ+

(without energy and potential energy). For our study, the local-
isation p is represented by a binary string (regular expression)
of cell states for two complex ECA particularly: ECA rule
110 [29] and rule 54 [25]. ECA rule 110 is proved to be
a computationally universal because it simulates a cyclic tag
system [11], [37]. The ECA rule 54 is universal because it
simulates functionally complete sets of logical gates [22]. Both
rules compute and simulate via interacting locations.

(a) (b)

(c)

Fig. 1. Representation of abstract localisations in a one-dimensional CA ring
beam routing.

Figure 1 shows two typical scenarios where localisations
pf and ps travel in a CA cyclotron. The first scenario (Fig. 1a)
shows two localisations travelling in opposite directions which
then collide. Their collision site is shown by a dark circle as
a contact point. The second scenario demonstrates a typical
beam routing where a fast localisation (pf ) eventually catches
up with a slow localisation (ps) at a collision site (Fig. 1b).
If the localisations collide like solitons [17], then the faster
particle pf simply overtakes the slower localisation ps and
continues its motion (Fig. 1c).

In essence, we will use these scenarios of the interactions
between localisations to synchronise more than two or three
localisations, connecting phase transitions between beam rout-
ings as a meta state of a finite machine [26].

IV. DESCRIPTION OF CYCLOTRONS

Typically, we can find all types of localisations mani-
fested in CA gliders, including positive p+, negative p−, and
patterns with neutral p0 displacements. Neutral displacement
of patterns in one dimension is related directly to still life
configurations in two-dimensional CA Conway’s Game of
Life. Also we can compose compound and large localisations
assembled from elementary localisations.

Let us consider the case where a quiescent state is substi-
tuted by cells synchronised together as a periodic background.
This phenomenon is common in ECA rule 110. The rule’s
evolution space is dominated by a number of localisations
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emerging in various different orders. Consequently, the number
of collisions between localisations increases quickly. Each
localisation has a period, displacement, velocity, mass, vol-
ume, and phase. A full description of localisations in rule
110 is available at http://uncomp.uwe.ac.uk/genaro/rule110/
glidersRule110.html, and for rule 54 visit http://uncomp.uwe.
ac.uk/genaro/rule54/glidersRule54.html.

Number of collisions between localisations in rule 110
and 54 is determined by the localisation’s’ periods (phases)
and a number of contact points. Of course, some localisations
have an infinite number of extensions and thus the number of
collisions is unlimited.

The number of collisions between localisation in rule 110
have a maximum level determined by the number of margins
oms and ems. Thus, for an arbitrary localisation with oms
contact points and other arbitrary localisation different from
the first with ems contact points, we have the following
number of collisions:

c ≤ oms ∗ ems (3)

where c represents the maximum number of collisions between
both localisations. Nevertheless, in some localisations the
maximum level is not fulfilled. We have the exact number
of collisions in the following equation:

c = |(omspi
∗ emspj

)− (omspj
∗ emspi

)|. (4)

where a pair pi, pj are localisations with different speed,
for details please read [29]. Number of collisions between
localisations in rule 54 follows a similar equation given in
[25]. Fundamentally, these equations are determined by regular
expression properties across its period, displacement, mass,
and volume of these localisations.

A full description of regular expressions to code localisa-
tions in rule 110 and rule 54 is described in details in [29],
[25].

Figure 2 displays a one-dimensional configuration where
two localisations collide repeatedly and interact as solitons
so that the identities of the localisations are preserved in the
collisions. A localisation with negative direction p−F collides
and overtakes a stationary localisation pC1

. Figure 2a presents
a whole set of cells in state 1 (dark points) where the
periodic background makes it impossible to distinguish the
localisations: p−F and pC1 . However, we can apply a filter
and thereby select localisations from their periodic background
(Fig. 2b). Evolutions are simulated with Discrete Dynamics
Lab (DDLab) [38] available in http://www.ddlab.org. Space-
time configurations of a CA exhibiting a collision between
localisations p−F and pC1

are shown in Fig. 2c.

The number of collisions between p−F and pC1 is reduced to
four different collisions basically. But just one of the colllisions
has the property as a soliton. So, the probability to get a
solitonic reaction between these localisations is 1

4 . In this case,
it is not difficult to synchronise different solitonic reactions
with multiple localisations.

A number of solitonic reactions is proved to be useful in
preserving information in the whole computable system [20].

(a) (b)

(c)

Fig. 2. Example of a soliton-type interaction between particles in ECA rule
110: (a) beam routing with all states, (b) same beam routing but with periodic
background filtered out and showing exact state of localisations, (c) exact
configuration at the time of collision.

V. IMPLEMENTING SOME BASIC FUNCTIONS

Toffoli considers a localisation travelling to collide with
other localisation [34]. Here we will consider packages of
localisations colliding simultaneously or sequentially. Thus a
transition shall be mapped to a new meta state, where a set of
localisations determines the new state on this machine. This
way, we can develop finite machines where vertices are not just
simple states, they are sets of strings that represent localisations
turning inside cyclotrons. Consequently, transitions on these
meta-vertices mean a change to other cyclotrons given for the
sum of their collisions [26].

Let see a sample with multiple collisions. We can design
a simple flip-flop pattern that is able of oscillate inside a
cyclotron. In this case, we have the next following relation
between five mobile localisations in ECA rule 110.

1) pF ← pB = pD1
+ pA2

2) pA2 ← pD1
= pB + pF

In this case, we have a diagram with two stages (cy-
clotrons). Specifically, we have five localisations, a slow lo-
calisation pF that is reached for a fast localisation pB , both
with a positive orientation. Collision results yield three local-
isations travelling in opposite direction, two pA localisations
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concatenated and represented as pA2 and one pD1 localisations.
Next cyclotron stage is precisely a collisions between fast
localisations pA2 versus a slow localisation pD1

, both traveling
with a negative orientation. This way, we have a cycle of
reactions (oscillator) that we could synchronize to simulate
a very simple flip-flop pattern.

The cycle includes two cyclotrons, which, when connected
one with another, represent a simple state machine. This
machine has two meta-vertices (states) and the transition is
determined by a contact point where gliders collide, as we can
see in Fig. 3. Of course, this cycle can be seen as an attractor
but made of collisions for this initial condition as well. The
probability to get these reactions between pF ← pB is 1

4 and
for pA2 ← pD1

there is just one collision. Interaction between
localisations pF ← pB is illustrated in Fig. 4a. Interaction
between localisations pA2 ← pD1

is illustrated in Fig. 4b.

Fig. 3. Beam routing as cyclotrons working as a finite machine. In both
cases fast particles reach to slow particles to change their state.

Flip-flop pattern is reached cycling these collisions. We can
use a small cyclotron to simulate a basic flip-flop alone or, in
this case, we can synchronise multiple reactions of the same
kind inside a more large cyclotron, as show Fig 4c.

The regular expression to implement this operation is coded
as follows. Here the symbol ‘−’ means the concatenation
operation, e is a string for the periodic background and
localisations F and B are represented for a given phase.

e− F (H,f1 1)− e−B(f1 1)− e

Evolution has periodic boundary conditions and one exact
distance preserves periodic collisions between such localisa-
tions. The multiple collisions are synchronised to construct a
meta structure (Fig 4c). The regular expression to reproduce
such a global behaviour is as follows:

(F (H,f1 1)− e−B(f1 1)− e)∗

the evolution coded in this initial condition needs 255 cells
evolving in 480 generations. Of course, a change of codes,
phases or distances will yield other collisions and therefore
the whole system will change.

Collider implementation for this flip-flop pattern is dis-
played in Fig. 5. Delay between collisions’ oscillation in-
creases MOD 4 in factors of MOD 14 restricted by its periodic
background. Initial condition employs 7,464 cells evolving
over 25,000 generations, and 16 mobile localisations pF ←
pB . Mobile localisations are situated just in the front of the
view and they are moving circularly. History of trajectories and
collisions are projected in three dimensions on the z-edge for

(a) (b)

(c)

Fig. 4. Collisions between localisations: (a) pF ← pB evolving with 260
cells in 220 generations, (b) pA2 ← pD1

evolving with 260 cells in 220
generations, and (c) internal structure of collisions with periodic boundaries
evolving with 255 cells in 480 generations.
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Fig. 5. Simple flip-flop oscillator implemented in a cyclotron with 7,464 cells in 25,000 generations. 16 mobile localisations pF ← pB were coded.

a better view of dynamics. Of course, visibility of localisations
is reduced to dots of colours as a consequence of the size of
cyclotron.

Second sample is handled with mobile localisations in
ECA rule 54. The problem is the design of a pattern that
constructs sequentially the set of positive integers. Figure 6
simulates the construction of positive integers, starting with
a triple collisions between two stationary localisations ge
and one mobile localisation ←−w , given the next sequence of
collisions: 2ge ← ←−w . This initial collision yields a sequence
of reactions that increases its intervals by space and structure.
Every element of the positive integers is represented by the
number of tiles in each stationary or mobile localisations. Of
course, when these intervals expand the stationary localisation
moves away gradually. Also, two mobile localisations emerge
during each collision (−→w and←−w ), and they are controlled by an
eater pattern. The eater pattern eliminate mobile localisations
that are not necessary in the process.

VI. FINAL REMARKS

In the future work, we will implement a full equivalent
Turing machine. In present design, we have considered accel-

eration of localisations, connection of two or three cyclotrons
to synchronise main collisions in a central cyclotron. An
interesting point here is how powerful is the concept of circular
machines in unconventional computing devices, such as, circu-
lar Post machines [18], circular Turing machines [9], and cyclic
tag systems [11]. Another field of future progress will be based
around design and experimental laboratory implementation of
real prototypes of collision-based computers made of polymer
chains concatenated into rings and linked together. There is
a bunch of problems to solve before practical implementation
becomes possible: physical organisation of inputs and outputs,
maintaining stable environmental conditions, life span of the
polymer based computers. Actually, we are working to simu-
late the function of a full computable operation synchronazing
multiple cyclotrons that will display an algorithm working
completely.
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