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Using Rule 126 elementary cellular automaton (ECA), we demonstrate that a chaotic discrete system — when
enriched with memory — hence exhibits complex dynamics where such space exploits on an ample universe
of periodic patterns induced from original information of the ahistorical system. First, we analyze classic ECA
Rule 126 to identify basic characteristics with mean field theory, basins, and de Bruijn diagrams. To derive this
complex dynamics, we use a kind of memory on Rule 126; from here interactions between gliders are studied for
detecting stationary patterns, glider guns, and simulating specific simple computable functions produced by glider
collisions. © 2010 Wiley Periodicals, Inc. Complexity 15: 34–49, 2010
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1. INTRODUCTION

I n this article, we are making use of the memory tool to
get a complex system from a chaotic function in dis-
crete dynamical environments. Such technique takes the

past history of the system for constructing its present and
future: the memory [1–6]. It was previously reported in [7]
how the chaotic elementary cellular automaton (ECA) Rule
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30 is decomposed into a complex system applying mem-
ory on this function. Recent results show that other chaotic
functions (Rule 86 and Rule 101) yield complex dynam-
ics selecting a kind of memory, including a controller to
obtain self-organization by structure reactions and simple
computations implemented by soliton reactions [8].

We focus this work on cellular automata (CA) evolv-
ing in one dimension, in particular taking the well-known
ECA where each function evaluates a central cell and its
two nearest neighbors (from left and right), and every cell
takes a value from a binary alphabet. Such ECA were intro-
duced by Wolfram and have been widely studied in several
directions [9].
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Among such ECA, there is a set of functions evolving
in chaotic global behavior where a number of cells remain
unordered and their transitions have a large number of
ancestors [10]. In this sense, special attention is given on
a chaotic one: the ECA Rule 126 introduced by Wolfram in
[11]. Particularly in [12],1 it is commented that Rule 126 gen-
erates a regular language with average growing faster than
any polynomial time. This property can be analyzed as well
by de Bruijn diagrams with additional features; in particular,
another partial analysis with de Bruijn and subset diagrams
was done by McIntosh [13] showing that string 010 in Rule
126 is the minimal Garden of Eden configuration (having no
ancestors).

Based on the idea developed in previous results for
obtaining complex dynamics from chaotic functions select-
ing memory and working systematically, it was suspected that
a complex dynamics may emerge in Rule 126 given its relation
to regular languages; making use of gliders coded by regular
expressions, as it was studied in Rule 110 [14] and Rule 54
[15].

In this way, Rule 126 provides a special case of how a
chaotic behavior can be decomposed selecting a kind of
memory into a extraordinary activity of gliders, glider guns,
still-life structures, and a huge number of reactions. Such
features can be compared to Brain Brian’s rule behavior or
Conway’s Life but in one dimension; actually none tradi-
tional ECA could have a glider dynamics comparable to the
one revealed in this ECA with memory denoted as φR126maj

(following notation described in [7, 8]).

1.1. One-Dimensional Cellular Automata
One-dimensional CA is represented by an array of cells xi

where i ∈ Z (integer set) and each x takes a value from a finite
alphabet �. Thus, a sequence of cells {xi} of finite length n
describes a string or global configuration c on �. This way,
the set of finite configurations will be expressed as �n. An
evolution is comprised by a sequence of configurations {ci}
produced by the mapping � : �n → �n; thus, the global
relation is symbolized as:

�(ct ) → ct+1, (1)

where t represents time and every global state of c is defined
by a sequence of cell states. The global relation is determined
over the cell states in configuration ct updated at the next
configuration ct+1 simultaneously by a local function ϕ as
follows:

ϕ
(
xt

i−r , . . . , xt
i , . . . , xt

i+r

) → xt+1
i . (2)

Wolfram represents one-dimensional CA with two para-
meters (k, r), where k = |�| is the number of states, and r

1http://mathworld.wolfram.com/Rule126.html

is the neighborhood radius, hence ECA domain is defined
by parameters (2, 1). There are �n different neighborhoods
(where n = 2r + 1) and kkn

distinct evolution rules. The
evolutions in this article have periodic boundary conditions.

1.2. Cellular Automata with Memory
Conventional CA are ahistoric (memoryless): i.e., the new
state of a cell depends on the neighborhood configuration
solely at the preceding time step of ϕ. CA with memory can
be considered as an extension of the standard framework of
CA where every cell xi is allowed to remember some period of
its previous evolution. Basically, memory is based on the state
and history of the system, thus we design a memory function
φ, as follows:

φ
(
xt−τ

i , . . . , xt−1
i , xt

i

) → si (3)

such that τ < t determines the backward degree of memory
and each cell si ∈ � is a function of the series of states in cell
xi up to time-step t − τ . Finally, to execute the evolution we
apply the original rule again as follows:

ϕ
(
. . . , st

i−1, st
i , st

i+1, . . .
) → xt+1

i .

In CA with memory, while the mapping ϕ remains unal-
tered, a historic memory of past iterations is retained by
featuring each cell as a summary of its previous states; there-
fore, cells canalize memory to the map ϕ. As an example, we
can take the memory function φ as a majority memory:

φmaj → si (4)

So, φmaj represents the classic majority function for three
variables [16], as follows:

φmaj : (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1) → x

on cells (xt−τ
i , . . . , xt−1

i , xt
i ) and defines a temporal ring before

calculating the next global configuration c. In case of a tie, it
allows to break it in favor of zero if xτ−1 = 0, or to one whether
xτ−1 = 1. The representation of a ECA with memory (given
previously in [7, 8]) is given as follows:

φCARm:τ (5)

where CAR represents the decimal notation of a particular
ECA and m the kind of memory given with a specific value
of τ . Thus, the majority memory (maj) working in ECA Rule
126 checking tree cells (τ = 3) of history is simply denoted as
φR126maj:3. Figure 1 depicts in detail the memory working on
ECA.

Note that memory is as simple as any CA local function but
sometimes the global behavior produced by the local rule is
totally unpredictable.
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FIGURE 1

Cellular automata with memory in cells.

1.2.1. Disclaimer
The memory mechanism considered here differs from other
CA with memory previously reported, often referred as higher
order (in-time) CA.2 These ones, in most cases, explicitly alter
the function φ and incorporate memory by directly determin-
ing the new configuration in terms of the configurations at
previous time-steps. Thus, in second order in time (mem-
ory of capacity two) rules, the transition rule operates as:
xt+1 = �(ct , ct−1). Double memory (in transition rule and in
cells) can be implemented as: xt+1 = �({st }, {st−1}). Particu-
larly interesting is the reversible formulation: xt+1 = ϕ�xt−1;
reversible CA with memory are studied in [6].

Some authors define rules with memory as those with
dependence in ϕ on the state of the cell to be updated [20,21].
So, one-dimensional rules with no memory adopt the form:
xt+1 = ϕ(xt

i−1, xt
i+1). Memory is not here indentified with

delay, i.e., refering cells exclusively to their state values a
number of time-steps in the past, [22]. So, for example, the
cell to be updated may be referenced not at t but at t − 1:
xt+1 = ϕ(xt

i−1, xt
i , xt

i+1) [23]. Again, the mapping function is
not extended, for example, to consider the influence of cell i
at time t − 1: xt+1 = ψ(xt−1

i , xt
i−1, xt

i , xt
i+1) as done in [24].

The use of the locution associative memory usually refers,
when used in the CA context, to the study of configuration
attractors [25, 26], which are argued by Wuensche [27] to
constitute the network’s global states contents addressable
memory in the sense of Hopfield [28].

2See, for example, [17] p. 118; [18] p. 43; or class MEMO in [19]
p. 7.

Finally, it is not intended here to emulate human memory,
i.e., the associative, pattern matching, highly parallel function
of human memory. The aim is just to store the past, or just a
part of it, to make it work in dynamics. Thus, working storage
might replace here the use of the term memory, avoiding the
anthropomorphic, and rather unavoidable, connotations of
the word memory [6].

2. THE BASIC FUNCTION: ECA RULE 126
The local-state transition function ϕ corresponding to Rule
126 is represented as follows:

ϕR126 =
{

1 if 110, 101, 100, 011, 010, 001
0 if 111, 000

.

Rule 126 has a chaotic global behavior typical from Class
III in Wolfram’s classification [9]. In ϕR126 we can easily recog-
nize an initial high probability of alive cells, i.e., cells in state
“1”; with a 75% to appear in the next time and complement of
only 25% to get state 0. It will be always a new alive cell iff ϕR126

has one or two alive cells such that the equilibrium comes
when there is an overpopulation condition. Figure 2 shows
these cases in typical evolutions of Rule 126, both evolving
from a single cell in state “1” [Figure 2(a)] and from a random
initial configuration [Figure 2(b)] where a high density of 1’s
is evidently in the evolution.

While looking on chaotic space-time configuration in
Figure 2, we understand the difficulty for analyzing the rule’s
behavior and selecting any coherent activity among periodic
structures without special tools.
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FIGURE 2

Typical fractal (a) and chaotic (b) global evolution of ECA Rule 126. (a) Initially all cells in “0” but one in state “1,” (b) evolution from random initial configuration
with 50% of “0” and “1” states.

2.1. Mean Field Approximation in ECA Rule 126
This section presents a probabilistic analysis with mean field
theory to search basic properties about ϕR126 evolution space
and its related chaotic behavior. Such analysis will offer a
better spectrum where we can start to explore the evolution
space from more useful and specific initial conditions where
some interesting behaviors may emerge.

Mean field theory is a well-known technique for discover-
ing statistical properties of CA without analyzing evolution
spaces of individual rules [13]. The method assumes that
states in � are independent and do not correlate each other
in the local function ϕR126. Thus, we can study probabili-
ties of states in a neighborhood in terms of the probabil-
ity of a single state (the state in which the neighborhood
evolves), and probability of the neighborhood is product of
the probabilities of each cell in it.

In this way, [29] presents an explanation of Wolfram’s
classes by a mixture of probability theory and de Bruijn dia-
grams, resulting a classification based on mean field theory
curve:

• class I: monotonic, entirely on one side of diagonal;
• class II: horizontal tangency, never reaches diagonal;
• class IV: horizontal plus diagonal tangency, no crossing;
• class III: no tangencies, curve crosses diagonal.

For the one-dimensional case, all neighborhoods are
considered as follows:

pt+1 =
k2r+1−1∑

j=0

ϕj(X )pv
t (1 − pt )

n−v (6)

such that j is an index number relating each neighborhood
and X are cells xi−r , . . . , xi , . . . , xi+r . Thus, n is the number of
cells into every neighborhood, v indicates how often state “1”
occurs in X , n − v shows how often state “0” occurs in the

neighborhood X , pt is the probability of cell being in state
“1,” while qt is the probability of cell being in state “0,” i.e.,
q = 1 − p. The polynomial for Rule 126 is defined as follows:

pt+1 = 3pt qt . (7)

Because ϕR126 is classified as a chaotic rule, we expect no
tangencies and its curve must cross the identity; remember-
ing that ϕR126 has a 75% of probability to produce a state
one.

Mean field curve (Figure 3) confirms that probability of
state “1” in space-time configurations of ϕR126 is 0.75 for high
densities related to big populations of 1’s. The curve also

FIGURE 3

Mean field curve for ECA Rule 126.
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FIGURE 4

Periodic patterns from some basin attractors.

demonstrates that ϕR126 is chaotic because the curve cross
the identity with a first fixed point at the origin f = 0 and
the nonexistence of any unstable fixed point inducing non-
stable regions in the evolution. Nevertheless, the stable fixed
point is f = 0.6683, which represents a “concentration” of 1s
diminishing during the automaton evolution.

Therefore, the initial inspection indicates no evidence of
complex behavior emerging in ϕR126. Of course, a deeper
analysis is necessary for obtaining more features from a
chaotic rule, so the next sections explain other techniques
to study in particular periodic structures.

2.2. Basins of Attraction
A basin (of attraction) field of a finite CA is the set of basins of
attraction into which all possible states and trajectories will
be organized by the local function ϕ. The topology of a single
basin of attraction may be represented by a diagram, the state
transition graph. Thus, the set of graphs composing the field
specifies the global behavior of the system [30].

Generally, a basin can also recognize CA with chaotic or
complex behavior following previous results on attractors
[30]. Thus, we have that Wolfram’s classes can be represented
as a basin classification:

• class I: very short transients, mainly point attractors (but
possibly also periodic attractors) very high in-degree, and
very high leaf density (very ordered dynamics);

• class II: very short transients, mainly short periodic attrac-
tors (but also point attractors), high in-degree, and very
high leaf density;

• class IV: moderate transients, moderate-length periodic
attractors, moderate in-degree, and very moderate leaf
density (possibly complex dynamics);

• class III: very long transients, very long periodic attractors,
low in-degree, and low leaf density (chaotic dynamics).

The basins depicted in Figure 5 show the whole set of non-
equivalent basins in Rule 126 from l = 2 to l = 18 (l means

length of array) attractors, all they display not high densities
from an attractor of mass one and attractors of mass 14.3

This way Rule 126 displays some nonsymmetric basins and
some of them have long transients that induce a relation with
chaotic rules.

Particularly we can see specific cycles in Figure 4 where it
is possible to find:

a. static configurations as still life patterns (l = 8);
b. traveling configurations as gliders (l = 15);
c. meshes (l = 12);
d. or empty universes (l = 14).

The cycle diagrams expose only displacements to the left,
and this empty universe evolving to the stable state 0 is
constructed all times on the first basin for each cycle, see
Figure 5.

This way some cycles could induce some nontrivial activ-
ity in Rule 126, but the associated initial conditions are not
generally predominant. However, some information is useful
indeed looking periodic patterns that have a high frequency
inside this evolution space and hence for recognizing a kind of
filter useful to get a better view of a possible complex activity
in Rule 126.

2.3. De Bruijn Diagrams
De Bruijn diagrams [13, 31] are very adequate for describ-
ing evolution rules in one-dimensional CA, although origi-
nally they were used in shift-register theory (the treatment of
sequences where their elements overlap each other). Paths in
a de Bruijn diagram may represent chains, configurations, or
classes of configurations in the evolution space.

For a one-dimensional CA of order (k, r), the de Bruijn
diagram is defined as a directed graph with k2r vertices and

3Basins and attractors were calculated with Discrete Dynami-
cal System DDLab available from http://www.ddlab.org/.
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FIGURE 5

The whole set of nonequivalent basins in ECA Rule 126 from l = 2 to l = 18.

k2r+1 edges. The vertices are labeled with the elements of
the alphabet of length 2r. An edge is directed from vertex i to
vertex j, if and only if, the 2r −1 final symbols of i are the same
that the 2r−1 initial ones in j forming a neighborhood of 2r+1
states represented by i � j. In this case, the edge connecting
i to j is labeled with ϕ(i � j) (the value of the neighborhood
defined by the local function) [32].

The de Bruijn diagram associated to Rule 126 is depicted
in Figure 6.4

Figure 6 exposes that there are two neighborhoods evolv-
ing into 0 and six neighborhoods into 1, so the higher fre-
quency is for state 1, indicating the possibility of having an
injective automaton, that is, the existence of Garden of Eden
configurations [13, 31]. Classical analysis in graph theory has
been applied over de Bruijn diagrams for studying topics such
as reversibility [33]; in other sense, cycles in the diagram indi-
cate periodic constructions in the evolution of the automaton
if the label of the cycle agrees with the sequence defined by its
nodes, taking periodic boundary conditions. Let us take the
equivalent construction of a de Bruijn diagram to describe

4De Bruijn diagrams were calculated using NXLCAU21
designed by Harold V. McIntosh; available from http://delta.
cs.cinvestav.mx/∼mcintosh.

the evolution in two steps of Rule 126 (having now nodes
composed by sequences of four symbols); the cycles of this
new diagram are presented in Figure 7.

The extended de Bruijn diagrams [13] are useful for cal-
culating all periodic sequences by the cycles defined in the
diagram. These ones also show the shift of a sequence for a

FIGURE 6

De Bruijn diagram for the ECA Rule 126.
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FIGURE 7

Patterns calculated from extended de Bruijn diagrams, in particular from cycles of order (x , 2) (that means a x -shift in y -generations).

certain number of generations. Thus, we can get de Bruijn
diagrams describing periodic sequences for Rule 126.

Cycles inside de Bruijn diagrams can be used for obtaining
regular expressions representing a periodic pattern. Figure 7
displays three patterns calculated as: (a) shift −3 in 2 gen-
erations representing a pattern with displacement to the
left, (b) shift 0 in 2 generations describing a static pattern
traveling without displacement, and (c) shift +3 in 2 gen-
erations is exactly the symmetric pattern given in the first
evolution.

So, we can also see in Figure 7 that it is possible to find
patterns traveling in both directions, as gliders or mobile
structures. However, generally, these constructions (strings)
cannot live in combination with others structures, and there-
fore it is really hard to have this kind of objects with such
characteristics. Although moreover Rule 126 has at least one
glider! This will be explained in the next sections.

2.4. Filters for Recognizing Dynamics in Rule 126
Filters are a useful tool for discovering hidden order in chaotic
or complex rules. Filters were introduced in CA studies
by Wuensche who employed them to automatically classify
cell-state transition functions, see [34]. Also filters related
to tiles were successfuly applied and deduced in analyzing
space-time behavior of ECA governed by Rules 110 and 54
[15, 35, 36].

This way, we have found that Rule 126 has two types of two-
dimensional tiles (which together work as filters over ϕR126):

• the tile t1 =
[

1111
1001

]
, and

• the tile t2 =




0000000
0111110
1100011
0110110
1111111


.

Filter t1 works more significantly on configurations gener-
ated by ϕR126, the second one is not frequently found although
it is exploited when Rule 126 is altered with memory (as we
can see in following sections).

The application of the first filter is effective to discover
gaps with little patterns traveling on triangles of ‘1’ states
in the evolution space. Although even in this case it may
be unclear how a dynamics would be interpreted, a careful
inspection on the evolution brings to light very small gliders
(as still life), as shown in Figure 8.

This glider emerging in Rule 126 and localized by a fil-
ter is precisely the periodic pattern calculated with the basin
[Figure 4(a)] and the de Bruijn diagram [Figure 7(b)]; in partic-
ular, the last one offers more information because such cycles
allow to classify the whole phases when this glider is coded in
the initial condition. The next sections demonstrate the effect
of filters for recognizing an amazing universe evolving in this
CA with memory.

3. CA φR126maj:4 AND COMPLEX DYNAMICS
This section discusses both relevant aspects of classic Rule
126 (ϕR126) and Rule 126 with memory (φR126m:τ ).

3.1. Dynamics Emerging with Majority Memory
As it was explained in [7, 37] a new family of evolution rules
derived from classic ECA can be found selecting a kind of
memory.

Figure 9 illustrates dynamics for some values of τ in
φR126maj.5 The space-time configurations are also filtered to
show a raw dynamics.We found that large odd values of τ tend

5Evolutions of φR126maj:τ were calculated with OSXL-
CAU21 system available in http://uncomp.uwe.ac.uk/genaro/
OSXCASystems.html.
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FIGURE 8

Filtered space-time configuration in ϕR126.

FIGURE 9

CA with majority memory φR126maj:τ , where 13 values of τ are evolved and filtered over a ring of 246 cells for 236 generations.
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to define macrocells-like patterns [9, 13]. Even values of τ are
responsible of a mixture of periodic and chaotic dynamics.

On exploring systematically distinct values of τ , we found
that φR126maj:4 produces an impressive and nontrivial emer-
gence of patterns traveling and colliding; so yet when the
memory is working as a new function, it is possible to
recognize some fragments inherited of the original rule
ϕR126.

We start our simulations with a single nonquiescent cell,
an example of this space-time configuration is provided in
Figure 10 showing the first 1156 steps, where in this case the
automaton needed other 12,000 steps to reach a stationary
configuration. Filter is convenient to eliminate the nonrel-
evant information about gliders. In Figure 10 we can see a
number of gliders, glider guns, still-life configurations, and
a wide number of combinations of such patterns colliding
and traveling with different velocities and densities. Con-
sequently, we can classify a number of periodic structures,
objects, and interesting reactions.

Basic primitive gliders are displayed in Figure 11, there
are still-life patterns s1 and s2, and gliders g1 and g2,
respectively. These structures can be ordered in a set
GφR126maj:4 = {s1, s2, g1, g2}.

Figure 12 shows the three more frequent glider guns
(gun1, gun2, and gun3) emerging in φR126maj:4. The next
three guns [Figure 12(a–c)] are combined in basic guns syn-
chronized by multiple reactions, which preserve emission of
gliders although some of them can get other frequencies.
We can include them increasing the set of periodic struc-
tures GφR126maj:4 = {s1, s2, g1, g2, gun1, gun2, gun3, and gun4}.
The last gun is presented in Figure 14 as a collision of gliders.

Basic properties of GφR126maj:4 are given in Table 1, where
also glider guns can be classified by frequencies of glider
emission as follows:

• small gun1 fires a gliders g1 and g2 (in turn) every five
steps;

• medium gun2 fires g1 and g2 (in turn) every 26 steps;
• large gun3 fires five g1 and g2 gliders every 100 steps.

FIGURE 10

Filtered space-time configuration of φR126maj:4 with 602 cells, periodic
boundaries, starting from one nonquiescent cell and running for 1156
steps.

FIGURE 11

Basic gliders in φR126maj:4. Two stationary configurations (as still life patterns) s1 and s2, respectively, and two gliders g1 and g2.
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FIGURE 12

Samples of glider guns and their compositions in φR126maj:4.

Frequencies are related to the number of emitted gliders
(in intervals) by a glider gun. Hence, the gun2 generates one
g1 and another g2 glider eight steps before to produce the
next ones, and a gun3 yields five g1 and five g2 gliders 100
steps before to produce the other ones.

3.2. Collisions between Gliders
Coding glider positions to get a desired reaction is a well-
known solution for some related problems about complex
behaviors. One of them is precisely the problem of self-
organization (by structures Figure 13) [38]. In this way, we
present how each basic glider can be produced by collisions
between other different gliders.

A little bit more complicated is to obtain glider guns by
collisions. Figure 14(a,b) depicts the production of a gun2

from a multiple collision of gliders. Later on, we shall present
two new combinations of guns [Figure 14(c,e)] and a new
gun4 [Figure 14(d)].

3.3. Other Collisions
A large variety of objects can be generated by collisions
between gliders in φR126maj:4. Some of these objects are use-
ful for designing complex dynamical structures. For instance,
Figure 15(a–c) shows how to delete (as an eater configuration)
a single glider or a stream of gliders g1 and g2. Two kinds of
annihilations are depicted as well [see Figure 15(d,e)].

Figure 16 describes a number of black hole patterns
emerging in φR126maj:4. Traditionally a black hole is a Life
object6 absorbing any glider that comes close to the main

6You can see a large classification of Life objects in http://
www.conwaylife.com/wiki/index.php.

body (in this case, still life patterns). Its relevance consists of
knowing how many patterns are able of attracting gliders and
consuming all of them forever, in these cases the g1 and g2

gliders.
Figure 17 displays soliton reactions, where colliding glid-

ers preserve their original forms. As known, a soliton has a
small change in their phase and displacement; also soliton
reactions are obtained with single gliders or by a stream of
them.

The last set of examples (Figure 18) presents other binary
reactions and some multiple collisions between g1 and g2

gliders. Some of them are conservative and others produce a
new number of these structures. Finally, we can take some
collisions to exploit their dynamics and controlling glider
reactions (see an extended relations of collisions in Table 2).
Thus, it can be obtained a full number of reactions for
generating desired gliders. The set of collisions is useful as
“raw material” in the implementation of computations on
φR126maj:4.

4. COMPUTING IN φR126maj:4

Given the large number of reactions in φR126maj:4 (see Table 2)
the rule could be useful for implementing collision-based
computing schemes [36, 39].

Figure 19 illustrates the interaction of gliders traveling,
colliding one another, and implementing a Boolean conjunc-
tion as result. Initially from previous collisions we can embed
logical constructions of AND and NOT gates from this figure,
as follows:

• for the gate (¬a ∧ b) the implementation with φR126maj:4 is
in Figure 18(b); but only with one g2 glider (see Table 2).

• for the gate (a ∧ b) the implementation corresponds to
Figure 13(a).

TABLE 1

Properties of Gliders GφR126maj:4

Structure vg Lineal volume Mass

s1 0/2 = 0 1 1
s2 0/10 = 0 12 28
g1 3/5 ≈ 0.6 8 17
g2 −3/5 ≈ −0.6 8 17
gun1 0/19 = 0 6 —
gun2 0/27 = 0 6 —
gun3 0/110 = 0 10 —
gun4 0/84 = 0 15 —

Velocity vg is calculated as displacement between period. The linear

volume is the maximum distance between two cells in state ‘1’ (diam-

eter of the set of cells in state ‘1’), finally mass is the number of cells

in state ‘1.’
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FIGURE 13

Generating basic gliders from collisions between other ones, this is self-organization by structures. The following reactions are illustrated as follows: (a)
g1 + g2 = s1, (b) s1 + g2 = g1, (c) g1 + s1 = g2, (d) s2 + g2 = g1, (e) g2 + s1 = g2, and (f) g1 + g2 = s2.

• for the gate (a ∧ ¬b) the implementation is presented in
Figure 18(a); but only with one g1 glider (see Table 2).

• for one FANOUT gate (a ↔ b = a + a + b) the implemen-
tation is shown in Figure 18(d).

Indeed, here we also adopt ideas developed by Rennard in
his design of Life computing architectures [40]. Glider g1 rep-
resents value 0, two g1 gliders together represent a value 1.
Two gliders 2g2 traveling in positive direction describe the

operator and one the register. Thus, the register will read
FALSE or TRUE if they are produced successfully.

Figure 20 illustrates the basic reactions required to pro-
duce a primitive computational scheme in φR126maj:4. The
following set of relations is applied (see Table 2):

2g1 ↔ 2g2 = ε g1 ↔ 2g2 = g1 g1 ↔ 2g2 = 2g2 + g1

2g1 ↔ 2g2 = g1 2g1 ↔ 2g2 = 2g2 + 2g1

FIGURE 14

Generating gliders guns by collisions.
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FIGURE 15

Eater reactions between gliders and still life (a, b, and c) and annihilation of gliders by collisions (d and e).

FIGURE 16

Black hole patterns consuming g1 and g2 gliders.

FIGURE 17

Examples of soliton reactions.

FIGURE 18

Examples of other collisions.
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TABLE 2

Table of binary, multiple, and other collisions.

Summary of collisions in φR126maj :4

Binary Multiple Soliton Guns

s1 ← g2 = s1 s2 ← g2 = 2g1 g1 → s1 = s1 + g1 s1 ← 2g2 = gun1
g1 → s1 = s1 g1 → s2 = 2g2 s1 ← g2 = g2 + s1 gun2 ← g2 = gun1
s1 ← g2 = g1 s2 ← 2g2 = 2g1 2g1 → s2 = s2 + 2g1 g1 ↔ g2 ← 2g2 = gun2
g1 → s1 = g2 2g1 → s2 = 2g2 s2 ← 2g2 = 2g2 + s2 g1 ↔ g2 = gun3
s2 ← g2 = g1 s2 ← 2g2 = 2g1 + g2 2g1 → 2s2 = 2g1 + 2s2 2g1 ↔ 2g2 = gun2

∗
g1 → s2 = g2 2g1 → s2 = g1 + 2g2 2s2 ← 2g2 = 2g2 + 2s2 3g1 ↔ 3g2 = gun1

∗
g1 ↔ g2 = ∅ 2g1 ↔ 2g2 = ∅ 2g1 ↔ 2g2 = 2g2 + 2g1 (∗ means gun composed)

g1 ↔ g2 = s1 2g1 ↔ 2g2 = g1

g1 ↔ g2 = s2 2g1 ↔ 2g2 = g2

g1 ↔ g2 = g1 2g1 ↔ 2g2 = 2g1

g1 ↔ g2 = g2 2g1 ↔ 2g2 = 2g2

g1 ↔ g2 = 2g1 g1 ↔ 2g2 = g1

g1 ↔ g2 = 2g2 2g1 ↔ g2 = g2

g1 ↔ g2 = g2 + 2g1 g1 ↔ 2g2 = g2

g1 ↔ g2 = g1 + 2g2 2g1 ↔ g2 = g1

g1 ↔ 2g2 = ∅
2g1 ↔ g2 = ∅
g1 ↔ 2g2 = 2g2 + g1

2g1 ↔ g2 = g2 + 2g1

g1 ↔ 2g2 = 2g2 + 2g1

g1 ↔ 2g2 = 2g2 + g2 + 2g1

2g1 ↔ g2 = 2g2 + 2g1

2g1 ↔ g2 = 2g2 + 2g1 + g1

3g1 ↔ 3g2 = 2g1

g1 → s1 ← g2 = ∅
g1 → s1 ← g2 = s1

g1 → 2s2 ← g2 = g1 + g2

g1 → 2s2 ← g2 = g2 + g1

2g1 → s1 ← 2g2 = 2g2 + 2s2 + 2g1

3g1 ↔ 3g2 = g2 + 2g2 + 2g1

4g1 ↔ g2 = 2g1 + g1

g1 ↔ 4g2 = g2 + 2g2

so we can represent serial reactions as:

2g1 + 2g2 = ε empty word
2g1 + 2g2 = g1 FALSE

2g1 + 2g2 = 2g1 TRUE.

and a NOT gate can be represented as:

• FALSE+2g2 = TRUE+2g2, or
• TRUE+2g2 = FALSE+2g2.

4.1. Constructing Formal Languages Since Gliders Collisions
in φR126maj:4

To be considered as a mathematical machine, φR126maj:4

should compute sets of formal languages [41]. We con-
sider such implementation as an easy way to illustrate
how implement some collision-based processes in φR126maj:4

(Figure 21).

Let � be a nonempty finite alphabet. Thus, a string
over � is a finite sequence of symbols from �. A set
of all strings over � of length n is denoted by �n. For
example, if � = {0, 1}, then �2 = {00, 01, 10, 11} to

FIGURE 19

Colliding interactions deriving in logic gates.
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FIGURE 20

Example of devices working as data, operator, and register, respectively, by gliders in GφR126maj:4 .

�3 = {000, 001, 010, 011, 100, 101, 110, 111}, and so on. This
way �0 = {ε} for any alphabet �. The set of all strings over
� of any length is the Kleene closure of � and is denoted as
�∗. However, we can write such expression in terms of �n, as
follows:

∑∗ =
⋃

n∈Z0

�n. (8)

This way for a binary alphabet �∗ = {ε, 0, 1, 00, 01, 10, 11,
000, 001, . . .}. Finally, a set of strings on � is called a formal
language.

FIGURE 21

Constructing the formal collision-based languages in φR126maj:4: They are �0 (top), �1 (middle), and �2 (bottom).
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Making use of gliders in φR126maj:4 we can get any set of
strings of �∗. For example, for the formal language 1∗ we need
to code all the initial conditions with reactions TRUE. For the
formal language (00 + 11)∗ the initial condition will be coded
as: (g1g1 + 2g12g1)∗. To yield an arbitrary length of strings, we
increase the number of cells in the CA. All distances between
gliders must be preserved and the left part become periodic.

5. CONCLUSIONS
We have enriched ECA Rule 126 with majority memory and
have demonstrated that by applying certain filtering pro-
cedures we can extract rich dynamics of gliders, guns and
infer a sophisticated system of reactions between gliders.
We have discovered how a complex dynamics emerges from
a chaotic system selecting an adequate memory. We have

shown that the majority memory increases nominal complex-
ity but decreases statistical complexity of patterns generated
by the CA. By applying methods such as de Brujin diagrams,
cycles, and graph theory, we have proved that Rule 126 with
memory opens a new spectrum of complex rules, in this case
a new CA with memory: φR126maj:4. Finally, we have demon-
strated some capacities for computing specific logical and
memory functions, and a future work will be constructing a
universal device.
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