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Abstract

In this paper, we will review the features of develop computations based
on rings. Particularly, we will analyse what kinds of interaction occur be-
tween gliders travelling on a cellular automaton ‘cyclotron’ derived from
a catalog of collisions. We will demonstrate that collisions between glid-
ers emulate the basic types of interaction that occur between localiza-
tions in non-linear media: fusion, elastic collision, and soliton-like colli-
sion. Computational outcomes of a swarm of gliders circling on a one-
dimensional torus are analysed via implementation some easy computing
models. Gliders in one-dimensional cellular automata are compact groups
of non-quiescent patterns translating along automaton lattice. They are
cellular-automaton analogous of localizations or quasi-local collective ex-
citations travelling in a spatially extended non-linear medium. So, they
can be represented as binary strings or symbols travelling along a one-
dimensional ring, interacting with each other and changing their states,
or symbolic values, as a result of interactions. We present a number of
complex one-dimensional cellular automata with such features.

Keywords: rings, cellular automata, particles, collisions, beam routing,
unconventional computing, computability

1 Introduction

Computations as effective procedures were developed from the past century for
logic mathematician, such as: Kurt Gödel, Alonzo Church, Alan Turing, Emil
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Post, Stephen Kleene [20]. Actually, we can speak about of unconventional
computing, they are abstract or practical models in non-linear media and con-
sequently typically massively parallel, thus we can develop computations with
different physics and other complementary logic. We have the conservative logic
[21], reversible computing [14, 47], reaction-diffusion computers [6], Physarum
computers [5], cellular automata computers [1, 24, 34, 51, 58, 38], collision-based
computing such as optical or molecular computing [3], solitons or competing
patterns computing [2, 32], or hot ice computers [4].

In this paper, we consider a particular case where computations can be car-
ried by particle collisions with complex cellular automata (CA). Here we study
one-dimensional CA and glider interaction on the evolution space. But confined
naturally in one dimension, on rings. This way, gliders (or particles) can be rep-
resented as set of strings which may be characterised via de de Bruijn diagrams
[41, 40]. Hence each glider is coded as a regular expression and initialised on a
specific initial conditions. So computations are a consequence of glider interac-
tions cyclical on such cyclotrons. We should differentiate that this study is not
related precisely as: circular Turing machines [11], circular Post machines [29]
or cyclic tag systems [18, 58] because in the case, sets of strings represent gliders
and they shall be transformed to other set of strings plus periodic strings that
are permanent in all time. We will illustrate such devices in complex elementary
CA (ECA) [57, 58] and ECA with memory (ECAM) [9, 10].

2 One-dimensional cellular automata

2.1 Elementary cellular automata (ECA)

One-dimensional CA is represented by an array of cells xi where i ∈ Z (integer
set) and each x takes a value from a finite alphabet Σ. Thus, a sequence of
cells {xi} of finite length n describes a string or global configuration c on Σ.
This way, the set of finite configurations will be expressed as Σn. An evolution
is comprised by a sequence of configurations {ci} produced by the mapping
Φ : Σn → Σn; thus the global relation is symbolized as:

Φ(ct)→ ct+1 (1)

where t represents time and every global state of c is defined by a sequence of
cell states. The global relation is determined over the cell states in configuration
ct updated at the next configuration ct+1 simultaneously by a local function ϕ
as follows:

ϕ(xti−r, . . . , x
t
i, . . . , x

t
i+r)→ xt+1

i . (2)

Wolfram represents one-dimensional CA with two parameters (k, r) [57],
where k = |Σ| is the number of states, and r is the neighbourhood radius,
hence ECA domain is defined by parameters (2, 1). There are Σn different
neighbourhoods (where n = 2r + 1) and kk

n

distinct evolution rules. The
evolutions in this paper have periodic boundary conditions.
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2.2 Elementary cellular automata with memory (ECAM)

Conventional CA are ahistoric (memoryless): i.e., the new state of a cell depends
on the neighbourhood configuration solely at the preceding time step of ϕ. CA
with memory can be considered as an extension of the standard framework of
CA where every cell xi is allowed to remember some period of its previous
evolution. CA with memory have been proposed originally in [7, 8, 9, 10].
Basically memory is based on the state and history of the system, thus we
design a memory function φ, as follows:

φ(xt−τi , . . . , xt−1
i , xti)→ si (3)

such that τ < t determines the backwards degree of memory and each cell si ∈ Σ
is a function of the series of states in cell xi up to time-step t − τ . Finally to
execute the evolution we apply the original rule again as follows:

ϕ(. . . , sti−1, s
t
i, s

t
i+1, . . .)→ xt+1

i .

classic ECA (ahistoric) ECA with memory

φm:τ

t− τ

...

{si}

t

ϕ

t

ϕ

...

t− 1

t + 1

t + 1

temporal ring storing memory

Figure 1: CA ahistoric and with memory in cells.

In CA with memory, while the mapping ϕ remains unaltered, a historic
memory of past iterations is retained by featuring each cell as a summary of its
previous states; therefore cells canalize memory to the map ϕ. As an example,
we can take the memory function φ as a majority memory:

φmaj → si (4)

where in case of a tie given by Σ1 = Σ0 in φ, we shall take the last value xi. So
φmaj represents the classic majority function for three variables [46], as follows:
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φmaj : (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1)→ x

on cells (xt−τi , . . . , xt−1
i , xti) and defines a temporal ring before calculating the

next global configuration c. In case of a tie, it is allows to break it in favour
of zero if xτ−1 = 0, or to one whether xτ−1 = 1. The representation of a ECA
with memory (given previously in [31, 37, 33]) is given as follows:

φCARm:τ (5)

where CAR represents the decimal notation of a particular ECA and m the
kind of memory given with a specific value of τ . Thus the majority memory
(maj) working in ECA Rule 126 checking tree cells (τ = 3) of history is simply
denoted as φR126maj:3 [37]. Figure 1 depicts in detail the memory working on
ECA. Note that memory is as simple as any CA local function and therefore
preserve and increase its dynamics in new orders of complexity [31].

3 Strings in one-dimensional cellular automata

We will handle particles or gliders as sets of strings, this way each string repre-
sents a specific glider with some properties as well. The set of strings represents
a subset of regular expressions. Hence we will use de Bruijn diagrams and tiling
patterns to extract such strings.

3.1 Regular expressions

Several interesting problems arise in a study of formal languages; one of them
is to determine the type of language derived and to which class the language
belongs. This hierarchy is well-known and established by Chomsky’s classifi-
cation. We shall study languages determined by regular sets, since the set of
expressions determined by each glider on a CA evolution rule can be associated
to a particular regular expression.

The finite automaton is a mathematical model with a system of discrete
inputs and outputs; the system can be placed in one of a finite set of states.
This state has the information of the received inputs necessary to determine the
behaviour of the system with regard of subsequent inputs. Formally, a finite
automaton M consists of a finite set of states and a set of transitions among
states induced by the symbols selected from some alphabet. For each symbol
there is a transition from one state to other (it can return to the same one); there
is an initial state where the automaton stars and some states are designated as
final ones or acceptance states [25].

A directed graph called a transition diagram is associated with a finite au-
tomaton as follows: the vertices of the graph correspond to the states of the
automaton; for a transition from state i to state j produced by an input symbol,
there is an edge labeled by this symbol from i to j in the transition diagram.
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The finite automaton accepts a chain w if the analogous transition sequence
leads from the initial state to a final one (or acceptation).

A language accepted by M , represented by L(M), it is the set {w|w is ac-
cepted by M}. The type of languages accepted by a finite automaton is impor-
tant because they complement the analysis established with regular expressions.
Historically an important relation was established by Kleene demonstrating that
regular expressions can be expressed by a finite automaton and vice versa, i.e.,
they are equivalent representations [46]. In other words, a language is a reg-
ular set if it is accepted by some finite automaton. The accepted languages
by finite automata are described by expressions known as regular expressions;
particularly, the accepted languages by finite automata are indeed the class of
languages described by regular expressions.

The sets of regular expressions on an alphabet are defined recursively as [25]:

1. φ is the regular expression representing the empty set.

2. ε is the regular expression describing the set {ε}.
3. For each symbol a ∈ Σ, a is a regular expression depicting the set {a}.
4. If a and b are regular expressions representing languages A and B respec-

tively, then a + b, ab, and a∗ are regular expressions representing A ∪ B,
AB and A∗ respectively.

When it is necessary to distinguish between a regular expression a and the
language determined by a, we shall use La.

The formal languages theory provides a way to study sets of chains from a
finite alphabet. The languages can be seen as inputs of some classes of machines
or like the final result from a typesetter substitution system i.e., a generative
grammar into the Chomsky’s classification [26].

language structure

recursively enumerated Turing machine
context sensitive linear bounded automata

context free pushdown automata
regular finite automata

Table 1: Language classes.

The basic model necessary for the languages of these machines (and for all
computation), is the Turing machine; the machines recognising each family of
languages are described as a Turing machine with restrictions. The relevance of
associating a machine or system to resolve each type of language is for estab-
lishing a classification (Table 1 of [26]).

Some languages are established by regular sets;1 here we will take all the
words recognised by the de Bruijn diagram that represent precisely a set of

1Examples and properties of the formal languages, grammars, finite state machines, Turing
machines and equivalent systems can be consulted in [11, 25, 46, 19, 53].
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regular expressions [41], and we just need those chains representing a structure
on a specific complex CA evolution rule, to manipulate the evolution space with
constructions of gliders.

3.2 de Bruijn diagrams

De Bruijn diagrams [40, 41] are very adequate for describing evolution rules in
one-dimensional CA, although originally they were used in shift-register theory
(the treatment of sequences where their elements overlap each other). We shall
explain the de Bruijn diagrams illustrating their constructions for determining
chains w defining a pair of gliders in G, for complex CA.

For a one-dimensional CA of order (k, r), the de Bruijn diagram is defined
as a directed graph with k2r vertices and k2r+1 edges. The vertices are labeled
with the elements of the alphabet of length 2r. An edge is directed from vertex
i to vertex j, if and only if, the 2r − 1 final symbols of i are the same that the
2r− 1 initial ones in j forming a neighbourhood of 2r+ 1 states represented by
i � j. In this case, the edge connecting i to j is labeled with ϕ(i � j) (the value
of the neighbourhood defined by the local function) [54, 55].

01

00 11

10

000

010

011

001

100

101

110

111

Figure 2: Generic de Bruijn diagram for a ECA (2,1).

The connection matrix M corresponding with the de Bruijn diagram is as
follows:

Mi,j =

{
1 if j = ki, ki+ 1, . . . , ki+ k − 1 (mod k2r)
0 in other case

(6)

Module k2r = 22 = 4 represent the number of vertices in the de Bruijn
diagram and j must take values from k∗i = 2i to (k∗i)+k−1 = (2∗i)+2−1 =
2i+ 1. Vertices are labeled by fractions of neighbourhoods originated by 00, 01,
10, and 11, the overlap determines each connection. In Table 2 the intersections
derived from the elements of each vertex are showed; they are the edges of the
de Bruijn diagram as we can see in Figure 2.

The de Bruijn diagram has four vertices which can be renamed as {0, 1, 2, 3}
corresponding with the four partial neighbourhoods of two cells {00, 01, 10, 11},
and eight edges representing neighbourhoods of size 2r + 1.
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(0,0) � (0,0) 000
(0,0) � (0,1) 001
(0,1) � (1,0) 010
(0,1) � (1,1) 011
(1,0) � (0,0) 100
(1,0) � (0,1) 101
(1,1) � (1,0) 110
(1,1) � (1,1) 111

Table 2: Intersections determining the edges of the de Brujin diagram.

Paths in the de Bruijn diagram may represent chains, configurations or
classes of configurations in the evolution space.

Vertices at the de Bruijn diagram are sequences of symbols in the set of
states and the symbols are sequences of vertices in the diagram. The edges
describe how such sequences can be overlapped; consequently, different inter-
section degrees yield distinct de Bruijn diagrams. Thus, the connection takes
place between an initial symbol, the overlapping symbols and a terminal one
(Table 2). Sequences derived from a de Bruijn diagram are the set of regular
expressions that a CA can generate since its evolution rule [41].

Also, we have the extended de Bruijn diagrams2 that calculate all the peri-
odic sequences by the cycles defined in the diagram. These ones also calculate
the shift of a periodic sequence for a certain number of steps; thus we can get
de Bruijn diagrams describing all the periodic sequences characteriding a glider
in any complex CA.

In order to illustrate how the sequences of each glider are determined, we
calculate the de Bruijn diagram composing an A glider in Rule 110, and dis-
cussing how the periodic sequences are extracted for representing this glider and
specifying as well the set of regular expressions for such glider.

Figure 3: De Bruijn diagram calculating A gliders and ether configurations.

The A glider moves two cells to the right in three times (for details see

2The de Bruijn diagrams were calculated with the NXLCAU21 system developed by McIn-
tosh for NextStep (OpenStep and LCAU21 to MsDos). Application and code source are avail-
able from: http://delta.cs.cinvestav.mx/~mcintosh/cellularautomata/SOFTWARE.html
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[44]). We compute the extended de Bruijn diagram (2-shift, 3-gen) depicted
in Figure 3. The cycles of the diagram have the periodic sequences describing
the A glider; however, these sequences are not ordered yet. Therefore, we must
determine and classify them.

In the figure we have two cycles: a cycle formed by vertex 0 and a large cycle
of 26 vertices which is composed as well by 9 internal cycles. The evolution of
the right illustrates the location of the different periodic sequences producing
the A glider in distinct numbers.

Following the paths through the edges we obtain the sequences or regular
expressions determining the phases of the A glider. For example, we have cycles
formed by:

I. The expression (1110), vertices 29, 59, 55, 46 determining An gliders.

II. The expression (111110), vertices 61, 59, 55, 47, 31, 62 defining nA gliders
with a T3 tile3 between each glider.

III. The expression (11111000100110), vertices 13, 27, 55, 47, 31, 62, 60, 56,
49, 34, 4, 9, 19, 38 describing ether configurations in a phase (in the
following subsection we will see that it corresponds to the phase e(f1 1)).

The cycle with period 1 represented by vertex 0 produces a homogenous
evolution with state 0. The evolution of the right (Figure 3) shows different
packages of A gliders, the initial condition is constructed following some of the
seven possible cycles of the de Bruijn diagram or several of them. We can select
the number of A gliders or the number of intermediate ether configurations
changing from one cycle to another.

Following each phase initiated by every T3 tile, the phases fi 1 for the A
glider are as follows:

• A(f1 1) = 111110

• A(f2 1) = 11111000111000100110

• A(f3 1) = 11111000100110100110

The sequence is defined taking the first value from the first cell of T3 tile
on the left until reaching a second cell representing the first value of the second
T3 tile on the right. Finally, such set of strings correspond precisely to the
sequences derived from the de Bruijn diagram concatenated with fragments of
ether configuration. This way, the set of strings e(f1 1), A(fi 1) ∀ i = {1, 2, 3}
under the operations +, ·, ∗, they are regular expressions. The full set of stings
to code gliders in Rule 110 LR110 is represented from the de Bruijn diagrams
and tiles [44].4 Tiles were necessary to represent strings in bigger gliders where
the de Bruijn diagram is very hard to calculate.

3A tile T3 is formed for the ether configuration in Rule 110, for details please see [44].
4The full set of regular expressions to code each glider in Rule 110, including the glider

gun, is available from: http://uncomp.uwe.ac.uk/genaro/rule110/listPhasesR110.txt.
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4 Universal CA and some CA computers

Universality in CA was conceptualised, developed and solved by von Neumann
in [56] as a previous step in the specification of his universal constructor for
a two-dimensional automaton of 29-states. The element of universality into
this constructor is a necessary ingredient to handle non-reliable pieces (atomic
elements) for assembling reliable components with the capacity of executing
computations by collisions of signals. Actually such ideas speaking about of
complex CA, as Life or Rule 110, is controlling gliders to make they reliable
components to implement complex and very large CA engineering.

There are some significant simplifications in universal-computing CA with
less states and dimensions: Codd in 1968 [17], Banks in 1971 [12], Smith in 1971
[50], Conway in 1982 [13], Lindgren and Nordahl in 1990 [27], and finally Cook
in 1998 [18, 58].

Analogous to the search of a minimal universal Turing machine [48], Cook
details the minimal universal CA with ECA Rule 110; showing how a “simple”
elemental CA is able to simulate an equivalent Turing machine deriving a novel
cyclic tag system (CTS), performing computations [18, 2] across of collisions of
gliders in millions of cells [45].5

4.1 Toffoli’s symbology

In the late 1970s Fredkin and Toffoli developed a concept of a general-purpose
computation based on ballistic interactions between quanta of information that
are represented by abstract particles [52]. The Boolean states of logical vari-
ables are represented by balls or atoms, which preserve their identity when they
collide with each other. They came up with the idea of a billiard-ball model
of computation, with underpinning mechanics of elastically colliding balls and
mirrors reflecting the balls’ trajectories. Later Margolus developed a special
class of CA which implement the billiard-ball model. Margolus’ partitioned CA
exhibited computational universality because they simulated Fredkin gate via
collision of soft spheres [36].

The following basic functions with two input arguments u and v can be
expressed via collision between two localizations:

1. f(u, v) = c, fusion

2. f(u, v) = u+ v, interaction and subsequent change of state

3. fi(u, v) 7→ (u, v) identity, solitonic collision

4. fr(u, v) 7→ (v, u) reflection, elastic collision

To map Toffoli’s supercollider [52] onto a one-dimensional CA we use the
notion of an idealized particle p ∈ Σ+ (without energy and potential energy).

5A brief list of CA computers is available from: http://uncomp.uwe.ac.uk/genaro/

otherRules.html.
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For our study, the particle p is represented by a binary string of cell states
derived from a de Bruijn diagram.

(a) (b) (c)

Figure 4: Representation of abstract particles in a one-dimensional CA ring
beam routing.

Figure 4 shows two typical scenarios where particles pf and pS travel in
a CA cyclotron. The first scenario (Fig. 4a) shows two particles travelling in
opposite directions which then collide. Their collision site is shown by a dark
circle as a contact point in (Fig. 4). The second scenario demonstrates a typical
beam routing where a fast particle pf eventually catches up with a slow particle
ps at a collision site (Fig. 4b). If the particles collide like solitons [28], then
the faster particle pf simply overtakes the slower particle ps and continues its
motion (Fig. 4c).

4.2 CA as cyclotrons

Typically, we can find all types of particles manifest in CA gliders, including
positive p+, negative p−, and patterns with neutral p06 displacements [42],
and also composite particles assembled from elementary localizations. Let us
consider the case where a quiescent state is substituted by cells synchronized
together as an ether (periodic background). This phenomenon is associated
with ECA Rule 110 ϕR110.7 Its evolution space is dominated by a number
of particles emerging in various different orders, some of which are really quite
complex constructions. Consequently, the number of collisions between particles
is increased. Each particle has a period, displacement, velocity, mass, volume,
and phase [42, 44].8

Figure 5 displays a one-dimensional configuration where two particles collide
repeatedly and interact as solitons so that the identities of the particles are
preserved in the collisions. A negative particle p−F collides and overtakes a

6Neutral displacement of complex structures in one dimension is related directly to still
life configurations [13] in two-dimensions.

7Rule 110 repository http://uncomp.uwe.ac.uk/genaro/Rule110.html
8A full description of particles in Rule 110 is available at http://uncomp.uwe.ac.uk/

genaro/rule110/glidersRule110.html
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(a) (b) (c)

Figure 5: Example of a soliton-type interaction between particles in ECA Rule
110: (a)–(b) two steps of beam routing, (c) exact configuration at the time of
collision.

neutral particle p−C1
. Figure 5a presents a whole set of cells in state 1 (dark

points) where the ether configuration makes it impossible to distinguish the
particles: p−F and p−C1

. However, we can apply a filter and thereby select particles

from their background ether (Fig. 5b).9 Space-time configurations of a cellular
automaton exhibiting a collision between particles p−F and p−C1

are shown in
Fig. 5c.

Filters selected in CA are a useful tool for understand “hidden” properties
of CA. This tool was developed by Wuensche in the context of automatic clas-
sification of CA [59]. The filters were derived from mechanical computation
techniques [23], pattern recognition [49], and analysis of cell-state frequencies
[59]. Thus, a filter is a sequence of cells that have a high frequency in the evo-
lution space. Such d-dimensional string repeat periodically, coexisting with any
complex structure without altering or disturbing the global dynamics.

4.3 Extending Toffoli’s symbology

While Toffoli considers a particle travelling to collide with other particle [52],
here we will consider packages of gliders colliding simultaneously or in series.
Hence, we can develop finite machines where the vertex are not just states, they
are sets of strings that represent particles turning inside cyclotrons. Conse-
quently, the transition on these meta-vertices mean a change of such cyclotrons
given for the sum of their collisions [38].

Let see an easy sample with multiple collisions. We have collisions that can
be represented as cycles of collisions. In this case, we have the next relations:

1. pF ← pB = pD1 + pA2

9Ring evolution is simulated with DDLab [60] available in http://www.ddlab.org.
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(a) (b)

Figure 6: Collisions between particles pF ← pB (a) evolving with periodic
boundaries to 93 cells in 573 generations, (b) internal structure of collisions
without periodic boundaries evolving in 510 cells in 1,150 generations.
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2. pA2 ← pD1 = pB + pF

given the cycle, hence we can construct this one across a cyclotron representa-
tion.

Figure 7: Beam routing as cyclotrons working as a finite machine. In both cases
fast particles reach to slow particles.

The cycle relates two cyclotrons, which when connected represent a simple
state machine. This machine has two meta-vertices (states) and the transition
is determined by a contact point where gliders collide, as we can see in Fig. 7.

Figure 6 illustrate two kinds of evolutions where gliders in Rule 110 have
periodic reactions. First evolution (Fig. 6a) has an initial condition with 93 cells
with the next regular expression (here the symbol − means the concatenation
operation):

e− F (H,f1 1)− e−B(f1 1)− e
the evolution has boundaries conditions and one exact distance preserve periodic
collisions between such particles evolving in 573 generations. However, without
boundaries conditions this periodic reaction can be preserved as the evolution
(Fig. 6b). The multiple collisions are synchronised to construct a meta glider
[43]. The regular expression to reproduce such global behaviour (as an infinite
string) is following:

(F (H,f1 1)− e−B(f1 1)− e)∗,
the evolution coded in an initial condition with 510 cells evolving in 1,150 genera-
tions. Therefore, the cyclotron representation helps to synthesise such dynamics
and construct specific finite machine to represent operations between them.

4.4 Implementing simple functions in rings

We can employ the particles codification to represent solutions of some basic
computing functions. Let us consider a ECAM rule φR30maj:8 [31, 33]. We
want to implement a simple substitution function addToHead working on two
strings w1 = A1, . . . , An and w2 = B1, . . . , Bm, where n,m ≥ 1. For example,
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A     A     A     B     B     B

B     B     B     A     A     A

Figure 8: Schematic diagram adding the string w2 to head of the list w3.

if w1 = AAA, w2 = BBB and w3 = w1w2 then the addToHead(|w2|) will yield:
w3 = w2w1 or w3 = BBBAAA (see schematic diagram of Fig. 8).

To implement such function in φR30maj:8 we must represent every data ‘quan-
tum’ as a particle. Gliders g1 and g2 are coded to reproduce a soliton reaction.
Another problem is to synchronise several gliders and obtain the same result
with multiple collisions.

Figure 9: Beam routing performing identity reactions in φR30maj:8. A cycle
realises its operation, two cycles re-initialise the beam state and the operations
can then be repeated.

The codification is not sophisticated however a systematic analysis of reac-
tions is required. It is known [31, 33] than a periodic gap and one fixed phase
between particles is sufficient to reproduce the addToHead function for any string
AnBm.

4.5 Full computable systems in complex ECA

Late of a detailed study about of the universality in Rule 110 [45], we can see
that this cyclic tag system (CTS) [18, 58] working in Rule 110 can be expressed
based on cycles of collisions self. Thus we can do cyclotrons or rings of particles
that represent the periodic packages of gliders to implement a CTS in Rule
110 evolution space. This results is explained in details at the paper Cellular
Automaton Supercolliders, please see [38].

14



5 Final remarks

This paper display a compact review of previous results about of some complex
ECA and study of gliders in ECA through the de Bruijn diagrams and regular
languages. Particularly, focused in ECA Rule 110 and some ECAM. Hence
following the Toffoli’s symbology to idealise supercolliders in CA, we proof how
these cyclotrons can be designed to implement computations as rings of strings.
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