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Universidad Autónoma del Estado de Hidalgo

Ciudad Universitaria, Carr. Pachuca-Tulancingo Km 4.5 Pachuca, Hidalgo 42184, México
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Abstract

We present the basic properties of reversible one-dimensional cellular automata equivalent by permu-
tations with the full shift, this work only takes reversible automata of neighborhood size 2. In these
cases, we prove that the evolution rule defining the temporal behavior of the automaton may specify the
spacial behavior as well. Based in this result we present a procedure for constructing configurations with
a predefined dynamical behavior. Some examples of these results are presented.

1 Introduction

Cellular automata were invented by John von Neumann for studying and implementing a self-reproducing
system [12]. Important stages in cellular automata theory are provided by John Conway and the automaton
LIFE [3] and by Stephen Wolfram and his analysis of one-dimensional cellular automata with two states and
three neighbors [13].
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One special type of cellular automata is the one where the global behavior is invertible, these cellular
automata are called reversible. The theory of reversible cellular automata has been widely developed for
the one-dimensional case, in this sense an outstanding work is developed by Hedlund which establishes
fundamental properties of these systems [4]. In particular, Hedlund provides a complete local characterization
for the behavior of reversible automata by means of two properties: uniform multiplicity of ancestors and
Welch indices. Other important works about reversible one-dimensional cellular automata are developed by
Amoroso and Patt [1], Toffoli and Margolus [10, 11], Nasu [8] and Kari [5].

In this paper we shall only study reversible automata of neighborhood size 2 in both rules, and from these ones
we will take those having a behavior equivalent with the full shift, where equivalent means that there exists
a state permutation transforming the automaton into the full shift. For this kind of reversible automata, we
shall prove that the evolution rule applied in the temporal direction may be also applied in the spacial one,
and we use this result for controlling the dynamical behavior of a given cell in the automaton.

The paper is organized as follows, Section 2 presents the basic properties of reversible one-dimensional cellular
automata and defines a reversible automaton equivalent with the full shift by a permutation. Section 3
exposes the correspondence between the temporal and the spacial behavior in reversible automata equivalent
with the full shift. Section 4 describes a procedure to specify initial configurations with a cell having a desired
dynamical behavior for reversible automata equivalent with the full shift. Section 5 illustrates the results of
this paper with two examples and the final section provides the concluding remarks of the paper.

2 Properties of reversible one-dimensional cellular automata equiv-
alent with the full shift

Before defining a one-dimensional cellular automaton, we present one important remark used through this
paper. For a finite set K of elements and m ∈ Z+, let Km be the set of sequences such that each w ∈ Km is
formed by m elements of K; and let K∗ be the whole set of finite sequences formed by elements of K. Now
we define a cellular automaton.

A one-dimensional cellular automaton A = {k,m, ϕ} consists of a finite set of states K whose cardinality is
represented by k ∈ Z+, an initial configuration c which is a one-dimensional array of cells where each takes
a single element of K, a neighborhood size m ∈ Z+ and a mapping ϕ : Km → K called the evolution rule of
A; in this paper we only use finite configurations.

The dynamics of A is given as follows, the initial and the final cell of the initial configuration c are concate-
nated so that c forms a ring, if c has n ∈ Z+ cells then we can index every cell of c by i ∈ {0 . . . n−1}, the cell
of c at position i is represented by ci. For every ci we shall take the block of cells b = ci . . . ci+m−1, the states
of the cells in b defines a sequence w ∈ Km; over this sequence we apply the evolution rule ϕ(w) → a ∈ K.
Thus the evolution rule ϕ produces a new configuration c′ with the same number of cells that c and the
state of c′i is produced applying the evolution rule ϕ over the states of the block b = ci . . . ci+m−1, and c′i
is vertically placed below the block b (representing the temporal evolution) and horizontally placed in the
middle of b (representing the spacial colocation), that is c′i is placed with regard of ci at position (i+m−1)/2.

Now we shall give two relevant definitions in cellular automata theory, for w ∈ Km and a ∈ K, if ϕ(w) = a
then w is an ancestor of a; we can extend this concept for larger sequences, for w ∈ Kn, n ∈ Z+, n ≥ m, let
us take ϕ(w) as the application of the evolution rule over each neighborhood forming w, thus ϕ(w) = v ∈
Kn−m+1 and w is an ancestor of v.

Given a cellular automaton A, it may be possible that there exists a sequence w ∈ K∗ such that it can
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not be produced as the evolution of another sequence of states, and w can only appear within the initial
configuration, in this case w belongs to the Garden of Eden of A.

We are interested in studying reversible automata, that is, cellular automata whose global behavior is
invertible. A one-dimensional cellular automaton A = {k,m, ϕ} is reversible if there exists another one-
dimensional cellular automaton A−1 = {k, m′, φ} such that A−1 has the inverse global behavior of A, that
is, we can take the automaton A and make it evolve for n steps obtaining a final configuration c′, then we
can apply A−1 over c′ and yield the inverse dynamical behavior up to reach the initial configuration c of A
and moreover we can obtain an ancestor for the initial configuration c (although it sounds as a contradiction
for the adjective initial).

In this way, a cellular automaton A is reversible if there are no sequences in the Garden of Eden, that
is, every sequence has at least one ancestor. For these systems Hedlund in [4] defines two important local
properties presented as follows:

Property 1 (Uniform multiplicity of states) For a reversible one-dimensional cellular automaton A =
{k, m,ϕ}, every sequence of states w ∈ K∗ has k ancestors.

Property 2 (Welch indices) For a reversible one-dimensional cellular automaton A = {k, m, ϕ} with
inverse A−1 = {k,m′, φ} and n ∈ Z+, n ≥ m′; every sequence of states v ∈ Kn has k ancestors {w1 . . . wk} ⊂
Kn+m−1 in A. These ancestors define three sets, a subset WL ⊂ Kn1 with cardinality L, a unique sequence
u ∈ Kn2 and a subset WR ⊂ Kn3 with cardinality R such that n1 + n2 + n3 = n + m − 1, the cartesian
product WL × u ×WR = {w1 . . . wk} and LR = k. WL is a left Welch subset, WR is a right Welch subset
and the values L and R are the Welch indices of A.

Nasu in [8] also defines another important property which characterizes the contents of WL and WR:

Property 3 (Intersection property) For a reversible one-dimensional cellular automaton A = {k, m,ϕ}
and every pair of Welch subsets (WL,WR), we have that WL ∩WR = a ∈ K.

We shall only take reversible automata A = {k, 2, ϕ} equivalent with the full shift of k symbols by a given
permutation, in particular we shall take the right full shift. A right full shift of k symbols consists of a set of
symbols K with cardinality k and an initial array of states c where for i ∈ Z, each position ci has assigned a
symbol of K. This position is shifted to the right in each time step of the system, time advances in discrete
steps; thus we have a new array c′ where c′i+1 = ci [9].

A right full shift of k symbols may be simulated by a one-dimensional cellular automaton A = {k, 2, ϕ}
[6, 7, 2], for any a, b ∈ K, the evolution rule must hold that ϕ(a, b) = a. For the configuration c′ produced
by the evolution of another configuration c we shall take that ϕ(ci, ci+1) = c′(i+1/2). A cellular automaton
A = {k, 2, ϕ} is equivalent with the full shift of k symbols by a permutation if there exists a permutation
π : K → K such that for any a, b, c ∈ K and ϕ(a, b) = c we have that π(c) = a. Cellular automata
A = {k, 2, ϕ} equivalent with the full shift of k symbols by a permutation are characterized in the following
way:

1. The evolution rule ϕ can be presented as a matrix Mϕ; each row index is a state a ∈ K, each column
index is a state b ∈ K and the entry (a, b) ∈ Mϕ is equal to ϕ(a, b) = c ∈ K.

2. All the elements of a given row in Mϕ are equal to some state of K.
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3. All the columns of Mϕ are equal to the same permutation of states in K.

Based on the properties of uniform multiplicity, Welch indices and the intersection of Welch subsets, in the
next section we shall describe the equivalence between the temporal and the spacial behavior of automata
equivalent with the full shift.

3 Correspondence between the temporal and the spacial behavior
in reversible automata equivalent with the full shift

A reversible automaton A = {k, 2, ϕ} equivalent with the full shift of k symbols by a permutation is a special
type of reversible one-dimensional cellular automaton with Welch indices L = 1 and R = k, that is, the left
part of every neighborhood defines its evolution. Since the inverse behavior of a right full shift is a left full
shift with the same number of symbols, and for any permutation π : K → K there exists the permutation
π−1 : K → K such that π−1(π(a)) = a ∈ K, then for the automaton A there exists the inverse automaton
A−1 = {k, 2, φ} with the inverse behavior and the following properties:

1. The evolution rule φ can be presented as a matrix Mφ; each row index is a state a ∈ K, each column
index is a state b ∈ K and the entry (a, b) ∈ Mφ is equal to φ(a, b) = c ∈ K.

2. All the elements of a given column in Mφ are equal to some state of K.

3. All the rows of Mφ are equal to the same permutation of states in K.

4. For a, b ∈ K we have that π(φ(a, b)) = b.

In this way the inverse automaton A−1 has Welch indices L−1 = k and R−1 = 1 and the same neighborhood
size than A, therefore we can use the properties of reversible automata for characterizing the evolution of A
and A−1.

1. For both A and A−1, every state a ∈ K has k ancestors .

2. For A, the ancestors of every a ∈ K start from a single state and end into R = k distinct states.

3. For A−1, the ancestors of every a ∈ K start from L−1 = k different states and end into a single state.

Thus for a given state a ∈ K, the number of ancestors defined from both A and A−1 are described in Figure
1, in this figure the contents of the ancestor cells at both directions illustrate the number of possible states
in each cell.
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L=1 
possible 
states

R=k 
possible 
states

State a

L-1=k
possible 
states

R-1=1
possible 
states

Evolution given by 

Evolution given by 

Figure 1: Form and number of ancestors for any a ∈ K defined by A = {k, 2, ϕ} and A−1 = {k, 2, φ}.

Figure 1 illustrates the behavior of the Welch indices for this kind of automata, we can see that R = L−1

and L = R−1, in this way we can specify other evolution rules ϕ′ and φ′ (Figure 2).

L=1 
possible 
states

R=k 
possible 
states

State a

L-1=R=k
possible 
states

R-1=L=1
possible 
states

Evolution rule ' Evolution rule ' State a'

Figure 2: Evolution rules ϕ′ and φ′ induced by the Welch indices of A and A−1.

We can easily show that ϕ′ and φ′ also define reversible one-dimensional cellular automata, first we take the
evolution rule ϕ′:

• Each state has LL−1 = LR = k ancestors fulfilling with Property 1.

• The ancestors of each state are divided in two parts, one with L = 1 possible different states and
another with L−1 = R = k states, fulfilling with Property 2. These two parts define Welch subsets WL

and WL−1 .

• Since L = 1 and L−1 = R = k, we have that WL ∩ WL−1 = a ∈ K and this intersection is unique,
holding with Property 3. This property makes extensive the previous properties for every sequence
w ∈ K∗.

The previous properties are analogous for φ′. The relevant remark in this part is that L−1 = R for every
a ∈ K, therefore WL−1 = WR and ϕ = ϕ′, analogously R−1 = L and WR−1 = WL hence φ = φ′. In this way
ϕ specifies the temporal evolution of the automaton but also defines a spacial evolution going from left to
right, and φ defines the inverse temporal evolution of the automaton and establishes as well another spacial
evolution going now from right to left. We shall use this feature in the following section in order to describe
a procedure for generation initial configurations of A with a desired dynamical behavior.
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4 Procedure for constructing initial configurations with a desired
dynamical behavior

Suppose that we have a reversible automaton A = {k, 2, ϕ} equivalent with the full shift of k symbols by a
permutation, and we desire that ci in the initial configuration takes predefined values as A evolves.

By the properties of A we know that there exists another A−1 = {k, 2, φ} such that ϕ defines some possible
spacial evolution from left to right and φ defines another spacial evolution in the inverse direction. Thus in
order to achieve that ci takes a list of predefined values we shall specify the next procedure:

Procedure 1 (Controlling the dynamical behavior of ci)

1. Take the list of n ∈ Z+ predefined values for ci and place them in the desired order into their cor-
responding positions within the evolution space. For j ∈ N enumerate these cells as c2j

i where the
superscript indicates that the cell is located into the 2j-th generation.

2. For each pair c2j
i , c

2(j+1)
i , apply both ϕ(c2j

i , c
2(j+1)
i ) = a ∈ K and φ(c2j

i , c
2(j+1)
i ) = b ∈ K; place a and

b into the right and the left cell respectively between c2j
i and c

2(j+1)
i . This step generates two new lists

of cells, one for the states produced on the right of the cells c2j
i and another for the states yielded on

the left of these cells.

3. For the right list produced in the previous step, apply step 2 only using the evolution rule ϕ and placing
the resulting cells into the right side of the list. For the left list yielded in the previous step, apply step
2 using only φ and placing the resulting cells into the left side of this list. In the case of lists produced
in odd steps, take both lists as a ring concatenating the last element with the first one for generating
new lists with the same number of cells and positions that the original one. The procedure stops after
2(n− 1) iterations.

In the next section we present two examples using this process, the first with five states and the second with
six states.

5 Illustrative examples

5.1 Automaton A = {5, 2, ϕ}

Take the matrix Mϕ for the evolution rule of the automaton A (Table 1):

0 1 2 3 4
0 4 4 4 4 4
1 2 2 2 2 2
2 0 0 0 0 0
3 1 1 1 1 1
4 3 3 3 3 3

Table 1: Matrix Mϕ for the automaton A = {5, 2, ϕ}.
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The permutation specifying the equivalence of the automaton with the full shift is π = {0 → 4, 1 → 2, 2 →
0, 3 → 1, 4 → 3}, hence the inverse permutation is π−1 = {0 → 2, 1 → 3, 2 → 1, 3 → 4, 4 → 0} and the
inverse evolution rule φ has the following specification:

0 1 2 3 4
0 2 3 1 4 0
1 2 3 1 4 0
2 2 3 1 4 0
3 2 3 1 4 0
4 2 3 1 4 0

Table 2: Matrix Mφ for the automaton A−1 = {5, 2, φ}.

Suppose that the list of desired states for the cell ci is l = {4, 2, 0, 3, 2}, then we shall use Procedure 1 in
order to calculate an initial configuration where ci evolves into the states of l, the steps of this procedure
are described in Figure 3.

4

2

0

3

2

4
1 3
2

2 0
0

4 4
3

1 1
2

Step 1

3 4 2
1 3

1 2 1
2 0

0 0 4
4 4

3 3 3
1 1

3 2 2

Step 2

3 4 2
3 1 3 0
1 2 1

2 2 0 2
0 0 4

4 4 4 3
3 3 3

4 1 1 1
3 2 2

Step 3

4 3 4 2 2
3 1 3 0

1 1 2 1 4
2 2 0 2

0 0 0 4 0
4 4 4 3

0 3 3 3 1
4 1 1 1

4 3 2 2 2

Step 4

4 3 4 2 2
3 3 1 3 0 0
1 1 2 1 4

2 2 2 0 2 3
0 0 0 4 0

2 4 4 4 3 4
0 3 3 3 1

0 4 1 1 1 2
4 3 2 2 2

Step 5

4 4 3 4 2 2 0
3 3 1 3 0 0

1 1 1 2 1 4 4
2 2 2 0 2 3

1 0 0 0 4 0 1
2 4 4 4 3 4

2 0 3 3 3 1 3
0 4 1 1 1 2

4 4 3 2 2 2 0

Step 6

4 4 3 4 2 2 0
3 3 3 1 3 0 0 4
1 1 1 2 1 4 4

3 2 2 2 0 2 3 3
1 0 0 0 4 0 1

1 2 4 4 4 3 4 2
2 0 3 3 3 1 3

0 0 4 1 1 1 2 1
4 4 3 2 2 2 0

Step 7

4 4 4 3 4 2 2 0 2
3 3 3 1 3 0 0 4

4 1 1 1 2 1 4 4 3
3 2 2 2 0 2 3 3

3 1 0 0 0 4 0 1 1
1 2 4 4 4 3 4 2

2 2 0 3 3 3 1 3 0
0 0 4 1 1 1 2 1

4 4 4 3 2 2 2 0 2

Step 8

List of 
elements

for ci

Desired configuration

Figure 3: Initial configuration calculated by Procedure 1.

In this way the configuration 444342202 evolves into the desired states for the cell ci, Figure 4 shows the
evolution of this configuration taking it as a ring.

4 4 4 3 4 2 2 0 2
0 3 3 3 1 3 0 0 4 0
4 1 1 1 2 1 4 4 3

1 3 2 2 2 0 2 3 3 1
2 1 0 0 0 4 0 1 1

2 0 2 4 4 4 3 4 2 2
0 4 0 3 3 3 1 3 0

4 4 3 4 1 1 1 2 1 4
3 3 1 3 2 2 2 0 2

.

.

.

ci

Figure 4: Evolution of the configuration 444342202 generating the desired behavior for ci, note that this
evolution is different from the one obtained in Figure 3.
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5.2 Automaton A = {6, 2, ϕ}

Take the matrix Mϕ in Table 3 representing the evolution rule of A, in this case the permutation defining
the equivalence of A with the full shift π = {0 → 3, 1 → 0, 2 → 4, 3 → 1, 4 → 5, 5 → 2}.

0 1 2 3 4 5
0 3 3 3 3 3 3
1 0 0 0 0 0 0
2 4 4 4 4 4 4
3 1 1 1 1 1 1
4 5 5 5 5 5 5
5 2 2 2 2 2 2

Table 3: Matrix Mϕ for the automaton A = {6, 2, ϕ}.

The inverse permutation of π is π−1 = {0 → 1, 1 → 3, 2 → 5, 3 → 0, 4 → 2, 5 → 4}, this permutation defines
the matrix Mφ corresponding with the automaton A−1 = {6, 2, φ} (Table 4) .

0 1 2 3 4 5
0 1 3 5 0 2 4
1 1 3 5 0 2 4
2 1 3 5 0 2 4
3 1 3 5 0 2 4
4 1 3 5 0 2 4
5 1 3 5 0 2 4

Table 4: Matrix Mφ for the automaton A−1 = {6, c, 2, φ}.

Let us take the list l = {0, 5, 3, 2, 4} for the predefined states of ci, then apply Procedure 1 we have the result
presented in Figure 5.

0

5

3

2

4

0
4 3
5

0 2
3

5 1
2

2 4
4

Step 1

2 0 5
4 3

1 5 1
0 2

4 3 4
5 1

5 2 0
2 4

2 4 5

Step 2

2 0 5
3 4 3 2
1 5 1

2 0 2 0
4 3 4

4 5 1 5
5 2 0

5 2 4 3
2 4 5

Step 3

List of 
elements

for ci

Desired configuration

0 2 0 5 1
3 4 3 2

5 1 5 1 4
2 0 2 0

2 4 3 4 3
4 5 1 5

4 5 2 0 2
5 2 4 3

0 2 4 5 1

Step 4

0 2 0 5 1
4 3 4 3 2 0
5 1 5 1 4

5 2 0 2 0 5
2 4 3 4 3

2 4 5 1 5 1
4 5 2 0 2

1 5 2 4 3 4
0 2 4 5 1

Step 5

2 0 2 0 5 1 5
4 3 4 3 2 0

4 5 1 5 1 4 3
5 2 0 2 0 5

5 2 4 3 4 3 2
2 4 5 1 5 1

3 4 5 2 0 2 0
1 5 2 4 3 4

2 0 2 4 5 1 5

Step 6

2 0 2 0 5 1 5
2 4 3 4 3 2 0 2
4 5 1 5 1 4 3

4 5 2 0 2 0 5 1
5 2 4 3 4 3 2

0 2 4 5 1 5 1 4
3 4 5 2 0 2 0

5 1 5 2 4 3 4 3
2 0 2 4 5 1 5

Step 7

5 2 0 2 0 5 1 5 1
2 4 3 4 3 2 0 2

2 4 5 1 5 1 4 3 4
4 5 2 0 2 0 5 1

1 5 2 4 3 4 3 2 0
0 2 4 5 1 5 1 4

4 3 4 5 2 0 2 0 5
5 1 5 2 4 3 4 3

5 2 0 2 4 5 1 5 1

Step 8

Figure 5: Initial configuration obtained by Procedure 1.

Thus the initial configuration 520205151 evolves into the predefined states for ci, Figure 6 depicts the
evolution of this configuration taking it as a ring.
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5 2 0 2 0 5 1 5 1
0 2 4 3 4 3 2 0 2 0
3 4 5 1 5 1 4 3 4

5 1 5 2 0 2 0 5 1 5
2 0 2 4 3 4 3 2 0

3 4 3 4 5 1 5 1 4 3
1 5 1 5 2 0 2 0 5

2 0 2 0 2 4 3 4 3 2
4 3 4 3 4 5 1 5 1

.

.

.

ci

Figure 6: Evolution of 520205151 yielding the predefined states for ci.

6 Concluding remarks

Cellular automata equivalent with the full shift have a very particular behavior characterized by the form
of their Welch subsets and the neighborhood size of their evolution rules. In this kind of automata we can
observe that the same dynamics can be defined in the temporal and spacial sense.

A further work is trying to extend these results for any reversible one-dimensional cellular automata, this
extension is in function of the features of the Welch indices, thus if we desire to know when a reversible
automaton has the same temporal and spacial behavior, then we have to characterize its Welch subsets.
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