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1 Historical background

A cellular automaton is a discrete-dynamical system which evolves through time,
cellular automata theory may be divided in four stages of important contribu-
tions, the first with its precursor John von Neumann, the second with John
Horton Conway, the third with Stephen Wolfram and we add a fourth stage
with Matthew Cook.

In the middle of the 40’s von Neumann was trying to develop a mechanism
with two essential characteristics: support complex behaviors and the capacity
of self-reproduction. Stanislaw M. Ullam, friend of von Neumann proposed him
to take the idea into a mathematical model handling cells, in this way we have
the rise of the cellular automata theory [35].

Von Neumann’s model is a cellular automaton which evolves in two dimen-
sions with twenty nine elements in the set of states and the transition function is
defined by the von Neumann neighborhood, and with this model von Neumann
demonstrates the feasibility of constructing a self-reproducing and an universal
constructor system.

At the beginning of the 70’s Conway presents a two-dimensional cellular
automaton which is able to reproduce the same behaviors that the model of
von Neumann, this automaton is better known as The Game of Life. But the
difference of Life is that the set of states has only two elements and the transition
function evolves with the Moore’s neighborhood [8]. In 1982 it is demonstrated
that Life can realize universal computation simulating a register machine by
means of implementing logic gates [4].

In the middle of the 80’s Wolfram makes a complete systematic study in one-
dimensional cellular automata, where the set of states has an arbitrary number
of elements greater than zero and the transition function depends on a central
cell and its neighbors at both sides in a linear array.

Wolfram establishes a classification which has been projected to n-dimensional
cellular automata [40]. This classification can be discussed in several aspects
[21], [11] and [42], but we will just say that it is a phenotypical classification.
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Figure 1: Wolfram classes

Class I represents stable behaviors, class II periodic behaviors, class III
chaotic behaviors and class IV complex behaviors, as Figure 1 illustrates. From
this classification, Wolfram conjectures that every cellular automaton class IV



is able to realize universal computation, in particular he indicates in 1985 the
cellular automaton Rule 110.

At the beginning of the 90’s Cook resolves the conjecture of Wolfram demon-
strating that Rule 110 is universal ([41] and [7]). This result has an outstanding
importance within the history and the theory of cellular automata, because it
is the simplest and the smallest cellular automaton fulfilling the characteristics
established by von Neumann.

The result is not trivial and with theoretical interest, in this sense it is
possible to establish a fourth stage where it is demonstrated that an elementary
cellular automaton can make universal computation, and unlike the model of
Conway, this automaton evolves in one dimension and with a linear transition
function, but this point will be discussed in detail in the following section.

2 Preliminaries in Rule 110

The study of Rule 110 began with the first investigations of Wolfram about
one-dimenional cellular automata.

Let us define some basic concepts used in the literature of cellular automata.
Dynamics in one dimension is simple, we have a set of states ¥ € ZT, a finite
linear array where each element takes a value from the set of states, this array
is the initial configuration of the system. A neighborhood has a central cell and
r neighbors on each side, where r € Q and k = |X|; thus the neighborhood is
of size 2r + 1 and the transition function ¢ simultaneously evaluates each one
of the k27! neighborhoods throughout the array in each generation ¢, where t
represents time. The previous concepts are illustrated in Figure 2.

Cellular Automata of Neighborhood in one dimension
order (k,r)
left neighbors right neighbors
central cell
Dynamics in one-dimension
GEEER
[ [T ] =neni= ‘.’:
[T

Figure 2: Dynamics in one dimension



Wolfram develops a complete systematic analysis in this type of cellular
automata with order (2, 1), discovering that Rule 110 has complex behaviors and
he establishes the conjecture that this rule can realize universal computation.

Rule 110 is a one-dimensional cellular automaton of order (2, 1) also called
elemental by Wolfram, two states and a neighbor on each side. This automaton
belongs to class IV because it has complex behaviors, that is, regions with stable,
periodic and chaotic behaviors in the same evolution space. The evolution rule
110 (011101102) is defined for the transformation of each neighborhood: 000,
100 and 111 evolve into state 0 in the following generation and neighborhoods
001, 010, 011, 101 and 110 evolve into state 1.

Figure 3: Random evolution in Rule 110

Figure 3 illustrates an example for the evolution of Rule 110 from a initial
random configuration, we can see regions with stable behaviors (periodic back-
ground called ether by Cook), periodic regions represented by gliders, chaotic
regions constructed by non-periodic structures during a long time which pro-
duces complex behaviors. The right figure is the same evolution but we have
changed the ether colors which makes easier to identify gliders and chaotic con-
structions in the evolution space.

Cook specifies a classification of these periodic structures known in cellu-
lar automata literature as gliders [6], where glider means a periodic structure
moving through time.

Figure 4: List of gliders according to the classification given by Cook

Figure 4 shows all the gliders until now known in Rule 110. Note that
there exists gliders with shifts from right to left, from left to right and with
no shift as the case of the C gliders. An interesting structure is the glider



Gun which generates A and B gliders periodically. Other relevant remark is the
ample variety of options for constructing a glider Gun, among other complicated
constructions in Rule 110 as we can see in [16].

The first article dedicated to the analysis of Rule 110 is by Wentian Li and
Mats G. Nordahl in 1992 [20], where a statistical study is developed and some
of the most common behaviors in the evolution space of Rule 110 are ilustrated.

In 1998 during a conference celebrated in Santa Fe Institute, Cook demon-
strates how Rule 110 can realize universal computation. In January 1999 Cook
presents a list of gliders found in the evolution space of Rule 110 [6]. At the
present time this information is not available in Internet by legal problems, nev-
ertheless these data can be consulted in [23], [41] and [15]. A good reference
discussing this legal problem may be consulted in [9].

On the other hand, in 1999 Harold V. MclIntosh develops an investigation
based in Rule 110 is a problem of covering the evolution space with triangles
[23].

Wolfram presented in March 2002 the book A New Kind of Science, where
the cover is indeed an evolution of Rule 110. The book includes an ample variety
of subjects and many illustrations, emphasizing the operation of an equivalent
Turing system in Rule 110.

2.1 Results obtained by Li and Nordahl

Li and Nordahl apply the mean field theory for obtaining a general statistical
description of the time behaviors in Rule 110 [20], this study is made in the evo-
lution space in a global and nonlocal way, determining statistically the behavior
of the space.

On the other hand, Doug Lind establishes a first glider classification that
can be consulted in the appendix of [40], these gliders are those which naturally
appear in the evolution space of Rule 110, identifying the periodic background
and each one of the gliders to reproduce them in a particular way.

2.2 Results obtained by Wolfram

Wolfram discovers complex behaviors in Rule 110 and establishes the conjecture
that this rule is able to realize universal computation, given the wide variety of
gliders in its evolution space. Wolfram claims to have a new kind of science in
its new book [41], this kind of science talks about when a simple system is able
to reproduce highly complex behaviors.

The book discusses several subjects of general interest, nevertheless there
are only about twelve pages dedicated to Rule 110, in them it is explained the
universality of this rule and some complex behaviors like the list of gliders found
by Cook. In october 2002 he offers a software NKS Ezxplorer to reproduce any
of the illustrations in the book, recently offers A New Kind of Science: Notes,
a book available in Internet.

The book presents the operation of a cyclic tag systems but it does not give
any antecedent or reference, and it is far from explain how the parts of the



system and their global operation can be constructed. Something questionable
is that the book claims copyright if someone tries to reproduce such a system.
In this context it is better to discuss the universality of Rule 110 and other
partial results as results of Cook.

2.3 Results obtained by Cook

We can say that the most important result after The Game of Life in cellular
automata theory in the last twenty years, is the demonstration of the universality
of Rule 110 made by Cook. The way in which this result is obtained devising
and implementing a cyclic tag system is very ingenious and interesting.

This result can be seen in three fundamental parts, first in determining the
system that must model a Turing machine [34], this model is represented as a
variant of the tag system [28], [36], [37] and [29], the cyclic tag system [7]. The
problem of deciding when a machine must stop in a tag system is the problem
of the word correspondence proposed by Emil L. Post [31].

The second part is modeling the mechanism with the gliders of Rule 110, this
is obtained handling well-defined blocks of gliders settling down a data area and
another area of operations, implementing the basic operations of a tag system:
read, erase and add data to the tape.

The third part is a consequence of the previous ones, describing the Turing
machine in traditional terms identifying the reading head and the transformation
rules.

Cook provides a list of gliders in the evolution space of Rule 110 [6] more
complete than the one presented by Lind, leaving open the problem of finding
more gliders. As in The Game of Life, it is interesting to know the number
of structures that can exist in the evolution space, the list shows each one of
the gliders and the extensions that some of them may have. This list has been
reproduced through collisions and can be consulted in [15].

2.4 Results obtained by McIntosh

After the conference realized in Santa Fe Institute, McIntosh develops an inves-
tigation in Rule 110 raising the problem of covering the evolution space with
triangles of different sizes [23].

This analysis offers several tools for the study, for example: the de Bruijn
diagrams, the subset diagrams (or power set), the pair diagrams (or cartesian
product), the cycle diagrams (or topologic trees), a matrix analysis and other
tools like the mean field theory and block probabilities reflected as curves in the
cartesian plane, contours or surfaces.

The problem to cover the evolution space with triangles is not mentioned by
Cook or Wolfram, this approach allows to see the evolution space in a discrete
way and it raises some interesting questions about finite shifts [10]. An inter-
esting question is to know which is the largest triangle in the evolution space
and if this one can be produced by some collisions as it is seen in [24]. His most
recent publication discusses the universality of Rule 110 in [25].



2.5 Our results

Taking the list of gliders by Cook [6] and the analysis of McIntosh [23], we
developed a systematic study in order to control the evolution space. The way
as we do this is by means of the basic properties of the tile representing ether
and these properties are reflected in all the structures of Rule 110.

Right now we do not use the probability tools as Li and Nordahl do; from
the results of McIntosh we take the T, tiles to get a discrete presentation of the
evolution space through de Bruijn driagrams.

Unlike the analysis of Cook using HORIZONTAL and DIAGONAL measures
by tile, we settle down a horizontal measurement called PHASE f;_1 [13], this
periodic phase is a regular expression that can be seen as a sequence of the
extended de Bruijn diagram [22]. One problem with these diagrams is that on
calculating more generations these grow exponentially and also the computing
requirements. The phases calculated for larger gliders are obtained aligning the
tile representing the periodic background in a phase f;_1.

On the basis of this analysis, the computer system OSXLCAU21 was devel-
oped for the study of Rule 110 [44]. With this tool we offer an effective procedure
to reproduce collisions between gliders (without extensions), and constructing
initial configurations through of the concatenation of regular expressions.

3 Origin and fundamental concepts

In his work, von Neumann determines two essential characteristics supported
by cellular automata: complex behaviors and self-reproduction. This takes von
Neumann to raise two fundamental questions in cellular automata theory: How
can we construct reliable components from nonreliable organisms?, and, What
kind of logical organization is needed so that an automaton be able of self-
reproduction?.

Figure 5: Synchronizing collisions among gliders



Both problems are complicated and represent extensive areas of study, this
implies that we must try to synthesize these concepts as simple as possible.
Finally we must relate these results with Rule 110. The cyclic tag system is
a good example of constructing reliable components (each one of the devices
constructed by Cook) from nonreliable organisms (gliders of Rule 110).

For example, Figure 5 illustrates the construction named meta-glider, through
the synchronization several collisions among several gliders.

3.1 Complexity

Mathematical definitions about the complexity of systems come from computing
and information theory. In the mathematical aspect, complexity is treated in the
context of mathematical objects like sequences of characters. The complezity of a
system is the amount of information necessary to describe it, this is a descriptive
complexity. In dynamical systems the description includes the changes of the
system in time influencing the environment. Then the amount of information
necessary to describe this reaction is a system of complexity in its behavior
(taken from Yaneer Bar-Yam [3]).

In cellular automata theory, complexity can be discussed in several contexts,
but we will focus to the amount of information that can be produced in the
evolution space. For instance in The Game of Life the number of interactions
that we can have among gliders, still life or other structures grows exponentially.
Rule 110 may support an infinite amount of information because the collision
among them is not limited, for example there are gliders with extensions that
belong to set of the positive numbers. On the other hand the formation of
groups among several gliders originates a series of limitless collisions in Rule
110.

3.2 Self-reproduction and Universal Constructor

The idea of von Neumann was to imitate the behavior of the human brain for
constructing a machine able to solve to complex problems [5]. He considered
that a machine with such complexity must contain self-control and self-repair
mechanisms. His idea was as well to establish differences between processes and
data, considering that they are in equality. This drives to find a machine able
to self-reproduction.

The first self-reproductive cellular automaton would be proposed by von
Neumann evolving in a two-dimensional array, with twenty nine elements as a
set of states and evolving with the von Neumann neighborhood. An important
problem is the implementation of this model, due to this complexity the von
Neumann rule has been partially implemented in a computer in [30] by U.
Pesavento.

Von Neumann was successful in finding discrete structures of cells useful to
generate new identical structures. Although this result is a very primitive form
of life, it is very interesting because usually one hopes that a machine can only
construct an object of smaller complexity than itself. With self-reproductive



cellular automata we obtain a machine able to create new machines of identical
complexity and capacities.

The von Neumann rule has in addition the property of making universal
computation, this means that there is an initial configuration of the cellular
automaton producing the solution of some algorithm, this property is of the-
oretical interest and not as much of practical application. Then the property
of universal computation means that some computer logic (logic gates) can be
simulated by a rule of a cellular automaton. All this demonstrates that the
complex and unexpected behavior can emerge from a cellular automaton.

Von Neumann raises the idea of an universal constructor (taken from Barry
McMullin [27] and [26]), in a sense which was not properly of computation.
For this system he required of a decoder and a description in order to obtain
the descendent phenomenon, in addition of requiring a copy of the description
adding it as a part of the descendant.

This result is more difficult than demonstrate the existence of a simple self-
reproducing machine, in particular it indicates the possibility that arbitrary
complex machines are able of self-reproduction and this is what differences the
von Neumann result from the one obtained by C. Langton in [19]. The operation
of the machine of Langton can be divided in two activities: copy and decoder,
because it does not incorporate something like a general constructive automaton.

Exactly self-reproduction is a characteristic of these complex systems, that
is, systems which preserve but do not increase their level of complexity in their
descendant systems. Von Neumann was interested in seeing exactly the mini-
mum level of necessary organization for self-reproduction. As an index of this
minimum complexity, he estimated the minimum size of patterns for the self-
reproduction in a cellular space. Then it is possible to design an universal
constructor in a rectangular adjustment of 57 x 143 cells, where several of the
cells remain in a quiescent state.

The universal constructor concurs in a small part of the pattern for the self-
reproduction. The reviewer unit and parts related to manipulation of memory
are larger. Many of the patterns are given by the units coding and decoding
the transmitted information or the reception of other parts of the pattern. Von
Neumann estimated the total size of the patterns for self-reproduction in 200,000
cells, this order can vary depending on the design.

In 1982 Conway realized the penultimate reduction with the automaton The
Game of Life, in two dimensions with a set of two states and evolving with
the Moore neighborhood. With this automaton it was demonstrated a non-
trivial reproduction similar to the von Neumann model. Nevertheless the rule
of Conway was not designed to facilitate self-reproduction. The existence of self-
reproducing patterns in the automaton of Conway is a strong evidence that the
type of self-reproduction imagined by von Neumann is a natural phenomenon,
possibly in many contexts [32].

In 1998 the last reduction was made with the demonstration of Cook in a
one-dimensional cellular automaton, this automaton known as Rule 110 has two
states and evolves in neighborhoods of size three [7].

The concept of universal constructor [26] is developed by Von Neumann, as



a preliminary step to introduce the problem of obtaining spontaneous and open
growth in the complex behavior of the automata. The concept was formulated
as an analogy to the result of Turing and his universal machine.

The investigations made by von Neumann in the theory of complex automata
are characterized by the problem of constructing non-trivial self-reproducing
machines, where non-trivial is a requirement which means that the machine
must have in an enviroment of a universal computer.

McMullin comments two very interesting things distinguishing an universal
constructor from an universal machine. The Turing universal machine needs
a description of the machine to work out, whereas the universal constructor is
able to construct his own description and operate, that is, there are not Turing
universal constructors.

Developing and obtaining a complete description of the universal constructor
of von Neumann is really a very interesting and complicated task. On the other
hand Conway raises an interesting problem in The Game of Life, it consisted of
awarding the first person demonstrating a pattern with a constant and unlimited
growth [32].

Many attempts were made to find such pattern, one of them was the arcon
object formed by seven alive cells. Observing that it has a constant growth in a
long term, but it was possible to check that its growth was not unlimited, find-
ing stability in 5206 generations (nevertheless its evolution is very interesting).
There were several techniques used to find such a pattern, however a group of
students in MIT including R. William Gosper, Robert April, Michael Beeler,
Richard Howell, Rich Schroeppel and Michael Specier solved the problem find-
ing a generator of periodic structures known in cellular automata literature as
a glider gun. In this sense a question is if von Neumann noticed this device in
his model, something that surely must exist.

With this we conclude that an universal constructor must have conditions
to reproduce anyone of its components in at least one way. An universal con-
structor must be able to maintain a constant and unlimited growth, and most
contradictory of all these features is that an universal constructor is not able
to construct everything. This last characteristic has been demonstrated in the
model of Conway on finding a configuration that cannot be constructed by any
way and it can just exist as an initial configuration. This configuration was
found by Roger Banks using a mathematical technique to prove that there is a
“Garden of Eden” configuration in a rectangular area of 9 x 33 cells [2].

3.3 Rule 110

Given the concepts explained in the previous section, it has been established
a direct relation to study Rule 110. First we can say is that it is a cellular
automaton of the von Neumann type, as well as the automaton of Conway. The
von Neumann model is a two-dimensional cellular automaton with twenty nine
states in the system and five cells for each transformation (29°). The model
of Conway is a two-dimensional automaton with two states and eight cells for

10



each transformation (2°). Rule 110 evolves in one dimension with two states
and three cells in its transition rule (23).

The order of each model is really representative, nevertheless although Rule
110 has a smaller order than the model of von Neumann and Conway, the
complexity that may be reproduced by this automaton is really complicated. In
Rule 110 we can find each one of the elements to identify a cellular automaton
of von Neumann type.

Rule 110 has an own universe originated by the variety of gliders that the
system can produce and the number of interactions that they have, where this
is an unlimited interaction. Since it had been mentioned, there are extensions
and nonfinite groups of glides. For example, B? glider at the present time is not
produced through some way.

E]

Figure 6: B? glider

Figure 6 shows two examples rising a B glider,! the interest is if it is pos-
sibly reproduced through others gliders (with a collision) or is product of a
configuration in the Garden of Eden. All gliders in Figure 4 has n extensions
for every n > 1.

Rule 110 is able to yield an unlimited growth in an infinite space, Cook
solves this problem on finding a glider gun as shown in Figure 4.

Rule 110 cannot construct it everything, for example the sequence (01010)*
is a configuration that can just exist in the initial configuration, is a Garden of

I These examples were found in Rule 110 Winter WorkShop
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Eden and therefore the evolution rule can never construct it in the evolution
space.

Rule 110 is able to create mechanisms inducing computations and therefore
it is a system which supports universal computation. Each one of the devices
used by Cook in the simulation of the cyclic tag system is really complicated
because the synchronization of several collisions between several different gliders
in a huge space is one to one, a change in a single bit destroys all the system
[17].

Rule 110 can support complex emergent behaviors in large scale both in
a microscopic and macroscopic level. Rule 110 is able to construct reliable
components from nonreliable organism and supporting self-reproduction.

Rule 110 has many similarities with The Game of Life, a interesting problem
is to know some objects that can be useful to simulate computations or other
phenomena and how they can be constructed.

Figure 7: Eater and fuses objects

Figure 7 shows two new objects found in “Rule 110 Winter WorkShop.”
The first object can be seen as a eater glider, the E glider eliminates D; and Cy
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gliders in each collision.

The second object can be seen as a shift between gliders, D; and Cs gliders
are changed by a pair of C gliders in each collision against an E glider. Some
of the characteristics and similarities with The Game of Life are discussed by
Cook in [6].

An interesting question is: is there some evolution which never becomes
stable in Rule 1107.

On the other hand, Rule 110 can directly simulate some physical phenomena,
for example the simulation of solitons between structures of different construc-
tion [12] and [18], in a completely deterministic atmosphere and without forcing
the cellular automaton.

The features presented by Rule 110 to implement mechanisms realizing com-
putations or some other process based on collisions among gliders can be as
extensive as The Game of Life. In this direction we can see a large number of
alternatives in collision-based computing, as we can see in the book of Andrew
Adamatzky [1], for example the implementation of a Turing machine in the
model of Conway made by Paul Rendell.

4 Conclusions

It has been limited the interest risen to analyze Rule 110, Santa Fe Institute
offered a course for the analysis of Rule 110 in the summer of 2001.2 On the
other hand Fred Lunnon has implemented an algorithm to obtain each one of the
collisions among gliders of Rule 110. Recently Mirko Rahn formally discussed
the operation of the cyclic tag system with regard of a Turing machine [33],
the approach is implementing a function accepting some Turing machine and a
configuration in Rule 110 which simulates the calculation of such a machine.

Rule 110 in spite of being an elementary cellular automaton, has an infinite
universe and this is quickly comprehensible by the number of behaviors that
can exist in the evolution space, collisions among gliders form a limitless data
base, for example the B”, B”, E™ and G™ gliders have a limitless number of
collisions, without forgetting the grouping of gliders with or without extensions
and the unlimited growth represented by the glider Gun, thus in this sense we
have unlimited growth, insolubility and undecidable problems.

Another tool that offers many results is the cycle diagram described by
Andrew Wuensche in [38] and [42], where the atractors cycles determine the
periodic behavior for a sequence of certain length, the ancestor ramification
illustrates the manifold for a given sequence and the leaves the configurations in
the Garden of Eden. At the present time, Wuensche has found a very interesting
cellular automaton with the same characteristics that the model of Conway and
Cook in [43].

Other question in the case of the cyclic tag system is implementing some
operations like the Fibonnaci sequence made by Paul Chapman (January 2003),
the parenthesis balance, among other things.

2http:/ /www.santafe.edu/sfi/education/reus/reus01/projects/binkowski.html
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