
A note about the regular language

of Rule 110 and its general machine:

the scalar subset diagram

Genaro J. Mart́ınez1, Harold V. McIntosh2,
Juan C. Seck Tuoh Mora3, and Sergio V. Chapa Vergara4

1 Faculty of Computing, Engineering and Mathematical Sciences, University
of the West of England, Bristol, United Kingdom.

http://uncomp.uwe.ac.uk/genaro/

Email: genaro.martinez@uwe.ac.uk
2 Departamento de Aplicación de Microcomputadoras, Instituto de Ciencias,

Universidad Autónoma de Puebla, Puebla, México.
http://delta.cs.cinvestav.mx/∼mcintosh/

Email: mcintosh@servidor.unam.mx
3 Centro de Investigación Avanzada en Ingenieŕıa Industrial, Universidad

Autónoma del Estado de Hidalgo Pachuca, Hidalgo, México.
Email: jseck@uaeh.edu.mx

4 Departamento de Computación, Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional, México.

Email: schapa@cs.cinvestav.mx

Abstract. As it was published in other papers, a regular lan-
guage can be derived in the elemental cellular automaton (ECA)
Rule 110 from a subset of regular expressions produced from its
set of gliders. This way, a full description of this subset too is
known and reported. This paper will discuss in detail a general
machine able to validate completely the subset of regular expres-
sions in Rule 110 and other characteristics, such as, the calculus
of Garden of Eden configurations in Rule 110. Such machine is
the subset diagram.

Keywords: Rule 110, regular expressions, gliders, Garden of
Eden, de Bruijn diagram, subset diagram

1 Introduction

ECA Rule 110 has received special attention by the results exposed
by Cook [1] and Wolfram [18] mainly. Nevertheless several details were
reached for numerous researchers related on this ECA.

In [12] it was reported a subset of regular expressions derived from
its family of gliders to code initial conditions in Rule 110. This subset
was obtained applying tools as de Bruijn diagrams [4], tiling theory [5,
8], and cycle diagrams [6].

The present paper must discuss how this regular language should be
proved from a more general machine. This machine is called the subset
diagram. The subset diagram was idealized and proposed by McIntosh
originally in [4] to study one dimensional cellular automata with other
very useful tools, such as, the de Bruijn diagrams, pair diagrams, cycle
diagrams, and more.

In this paper, we consider that the reader has basic notions on ECA
Rule 110. If you are a novel reader on this subject then we should suggest
the next references [1, 18, 10, 5].5 To the subjects related to the de Bruijn
and subset diagrams; please read [4, 6, 16].

2 Regular language in Rule 110

This section is devoted to give a brief introduction in phases and de
Bruijn diagrams in Rule 110; a more extended explanation can be found
in [12].

Let us remember that a finite subset of regular expressions repre-
sented as ΨR110 determines a regular language LR110. The number of
sequences w from the binary alphabet Σ given in the set, is the union
of the periods for every glider:

ΨR110 =
p⋃

i=1

wi,g ∀ (wi ∈ Σ∗ ∧ g ∈ G) (1)

where G is the whole set of gliders in Rule 110 and p ≥ 3 is the cor-
responding period. This way, we can speak of a regular language LR110

that is constructed from the expressions of ΨR110. We most notice that
this language is a subset of the whole language in Rule 110, that is, it
is only the one defined by the expressions representing gliders, therefore
we have:

LR110 = {w|w ∈ ΨR110 operating under the basic rules: ·,+, ∗}. (2)

This way, LR110 is established by the de Bruijn diagrams and the
characterization of tiles, where both have been analyzed for defining

5 Also you can see a fast introduction, subjects and references related on Rule
110 from http://uncomp.uwe.ac.uk/genaro/Rule110.html

useful features called “phases fi 1.” The phases indicate with precision
both the position and the exact moment where each glider must be
positioned into a given initial condition [12].

Applying the set of regular expressions and their basic operations,
we are able to construct desired initial conditions which yield evolutions
with important characteristics; the main interest is to control and pro-
duce collisions among gliders. In this way LR110 is a powerful tool to
codify initial conditions in Rule 110. Immediate applications with rele-
vant results in the study of Rule 110 has been performed over hundreds,
thousands, millions and thousands of million of cells [9, 8, 11].

Thus de Bruijn diagrams [4, 16] are very adequate for describing evo-
lution rules in one-dimensional cellular automata, although originally
they were used in shift-register theory (the treatment of sequences where
their elements overlap each other). These diagrams can extract any pe-
riodic string of Rule 110 or another CA; particularity we employ the
connected cycles from extended de Bruijn diagrams to calculate any
string and its shifts over a number of generations.

A glider in Rule 110 can be seen as a periodic construction preserving
a defined cyclic border with ether in the evolution space. Essentially a
glider has the following characteristics: volume (number of cells repre-
senting its form), period (number of evolutions to recover the original
sequence), displacement (change of horizontal position measured in cells
on finishing its period) and speed (velocity produced by the period be-
tween the displacement). Thus a set of gliders with different volume and
speed can be represented.

In order to explain how the sequences of each glider are determined, a
de Bruijn diagram for an A glider is firstly calculated and it is decribed
how the periodic sequences are extracted from it or representing this
glider and specifying as well its set of regular expressions.

Fig. 1. De Bruijn diagram calculating A gliders within ether configurations.

The A glider moves two cells to the right in three times, the cor-
responding extended de Bruijn diagram (2-shift, 3-gen) is depicted in
Figure 1. Cycles in the diagram are periodic sequences describing each
phase in the glider; however these sequences are not ordered yet, hence
they must be classified.

Diagram in Figure 1 still has two cycles: a cycle formed by just a
vertex 0 and another large one of 26 vertices composed by other nine
internal cycles. The evolution of the right illustrates the location of the
different periodic sequences producing the A glider in distinct numbers.

The sequences or regular expressions determining the phases of the
A glider are obtained following paths through the edges in the diagram.
For instance, the following cycles specify different formations:

I. The expression (1110)*, vertices 29, 59, 55, 46 determine An gliders.
II. The expression (111110)*, vertices 61, 59, 55, 47, 31, 62 define nA

gliders with a T3 tile among each glider.
III. The expression (11111000100110)*, vertices 13, 27, 55, 47, 31, 62,

60, 56, 49, 34, 4, 9, 19, 38 describe ether configurations in a specific
phase, i.e., the expression e(f1 1) [12].

As it was reported as well in [12] the full subset of regular expressions
to represent A gliders is formed by the next number of sequences:

A(f1 1) = 111110
A(f2 1) = 11111000111000100110
A(f3 1) = 11111000100110100110
A(f4 1) = A(f1 1)

where these sequences are represented in the de Bruijn diagram.
Finally a cycle with period 1 represented by vertex 0 produces an ho-

mogeneous evolution in state 0. The evolution space in Figure 1 shows
different packages of A gliders. Also this regular language LR110 is re-
stricted to gliders in Rule 110. The application of this regular subset
allows to solve some important problems, on defining initial conditions
codified by phases; offering as well a powerful tool to codify the evolution
space of Rule 110.6

3 Scalar subset diagram in Rule 110

The scalar subset diagram [4] is derived from the de Bruijn diagram,
representing a general machine to verify what sequences belong to the
6 The regular language LR110 does not imply that the evolution of Rule 110 is

regular in the sense of limit sets [17, 2, 14], because LR110 is only conserved
in the composition of the initial conditions.

language produced by Rule 110, and besides this diagram can calculate
Garden of Eden configurations [13] and surjective cellular automata [15].

In this way, the subset diagram has 2k2r

vertices with k states and r
neighbors. If all the configurations of certain length have ancestors then
all the configurations with extensions both to the left and the right with
the same equivalence must have ancestors. But if this is not the case,
then they describe configurations in the Garden of Eden and represent
paths going from the maximum set to the minimum one in the subset
diagram.

The nodes are grouped into subsets, note being taken of the subsets
to which one can arrive through systematic departures from all the nodes
in any given subset. The result is a new graph, with subsets for nodes and
links summarizing all the places that one can get to from all the different
combinations of starting points. Sometimes, but far from always, the
possible destinations narrow down as one goes along; in any event one
has all the possibilities cataloged.

Thus we can define the subset diagram as follow [4, 6]. Let a and b be
vertices, S a subset and |S| the cardinality of S; then the subset diagram
is defined by the following equation:

∑
i

(S) =

φ S = φ
{b | edgei (a, b)} S = {a}.⋃

a∈S Σi(a) |S| > 1
(3)

three important properties are given here:

1. If there is a path from the maximum subset to the minimum one,
then there exists a similar path starting from some smaller subset to
the empty one. On the other hand, if all the unitary classes do not
have edges going to the empty set, then there are no configurations
in the Garden of Eden.

2. There is a certain image of the de Bruijn diagram, in the sense that
given an origin and a destiny, there is always a subset containing the
accessible destiny and another subset containing the origin, besides
the destiny can have additional vertices.

3. The subset diagram is not connected, and it is interesting to know
the accessible greatest subset as well as the smallest one from a given
subset.

One point to be observed is that if one thinks that there should be
a link at a certain node and there is not, the link should be drawn to
the empty set instead; a convention which assures every label of having
a representation at every node in the subset diagram.

Vertices of the subset diagram are formed by the combination of each
subset formed from the states of the de Bruijn diagram (a power set).
Would be useful first write its de Bruijn diagram – expressing its local
function ϕ – which still has a symbolic variant in two matrices [6].

Symbolic de Bruijn matrices Dk,s or Ds are characterized by k states
and s number of states in the partial neighborhood. Thus to Rule 110
we have the next symbolic matrices:

D2,2 =


0 1 . .
. . 1 1
0 1 . .
. . 1 0

 =


0 . . .
. . . .
0 . . .
. . . 0

+


. 1 . .
. . 1 1
. 1 . .
. . 1 .

 .

Therefore, for any CA order (2, 1) we have four sequences of states
in the Bruijn diagram enumerated as {0}, {1}, {2} and {3}. Therefore
all the possible subsets are: {0, 1, 2, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3},
{1, 3, 2}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {3, 2}, {3}, {2}, {1},
{0} and {}. In these subsets, four unitary classes can be distinguish; the
incorporation of the empty set guarantees that all subsets have at least
one image, although this one does not exist in the original diagram.

Table 1. Relation between states of the subset diagram in Rule 110.

subset decimal link with 0 link with 1

0,1,2,3 15 9 14
1,2,3 14 9 14
0,2,3 13 9 6
0,1,3 11 9 6
0,1,2 7 1 14
2,3 12 9 6
1,3 10 8 12
1,2 6 1 14
0,3 9 9 6
0,2 5 1 2
0,1 3 1 14
3 8 8 4
2 4 1 2
1 2 0 12
0 1 1 2
φ 0 0 0

In order to determine the type of union between the subsets, the state
in which each sequence evolves must be reviewed to know towards which

states (subset that form it) may be connected; this way the relation
for Rule 110 is constructed in Table 1. So its respective scalar subset
diagram for Rule 110 is showed in the Figure 2.

There is another important reason for working with subsets. Labelled
links resemble functions, by associating things with one another. But if
two links with the same label emerge from a single vertex, they can
hardly represent a function. Forging the subset of all destinations, leaves
one single link between subsets, bringing functionality to the subset dia-
gram even though it did not exist originally. Including the null set ensures
that every point has an image, avoiding partially defined functions.

Once the subset diagram has been formed, if a path leads from the
universal set to the empty set, that is conclusive evidence that such a
path exists nowhere in the original diagram [13].

15

7 11 13 14

5 9 6 103 12

1 2 4 8

0

Fig. 2. Scalar subset diagram of Rule 110.

Although the edges between subsets do not define a function, it is
well defined for the whole graph by the inclusion of the empty set. Each

class of edges defines a function: Σ0 or Σ1. The subset diagram describes
the join of Σ0 ∪ Σ1, that by itself is not functional [4, 6].

This way, Figure 2 displays the full scalar subset diagram for Rule
110. Each connection was defined from their relations between subsets
(see Table 1). We must distinguish four levels of subsets, where it is
possible to transit on its four unit classes. Also, we should observe that
a residual of the de Bruijn diagram can be founded in the subset diagram.
This is because a unit class is precisely the nodes of original diagram.

At first instance, we can see that a number of relations are more
frequent than others. Also there are nodes without receive any connection
as input, or nodes with most connections including loops itself. However
more interesting are cycles forming cycles of different lengths. They are
important to recognize words or sequences that a cellular automaton
could recognize.

Therefore, it is evident that a small subset diagram may be deduced
from its original diagram. This diagram shall include only vertexes with
cycles, the universal and empty set and the subset of cardinality one,
yielding a new diagram that will be more practical to our proposes. The
reduction give yet a more small diagram showed in the Figure 3.

Fig. 3. Reduced scalar subset diagram of Rule 110.

We shall discuss how to exploit this last diagram to describe a gen-
eral machine recognizing regular expressions in Rule 110. However we
can still mention in this moment, that consequently into the subset dia-

gram, we can quickly see paths from the universal set to the empty one;
guaranteeing strings without ancestors.

3.1 Garden of Eden in Rule 110

Thus the local function ϕ of Rule 110 has an injective correspondence,
with this correspondence we can find paths in the subset diagram rep-
resenting Garden of Eden configurations. In this way, we have that two
minimal configurations in the Garden of Eden for Rule 110 they are:
(101010)∗ and (01010)∗.

3.2 A general machine recognizing and accepting any regular
expression of Rule 110

The subset diagram represents too a powerful general machine recogniz-
ing and accepting any string of wi,g, remembering how a regular language
is recognized in classic automata theory [3, 7]. In order to verify this, it
is just necessary to take a sequence from the subset of regular expres-
sions and, reviewing if there exists the corresponding path in the subset
diagram starting from the maximum set and ending into a nonempty
subset.

For example, we can analyze the subset of regular expressions repre-
senting a C2 glider [12].

C2(A,f1 1) = 11111000000100110
C2(A,f2 1) = 11111000100000110
C2(A,f3 1) = 11111000100110000
C2(A,f4 1) = 11100011000100110
C2(B,f1 1) = 11111010011100110
C2(B,f2 1) = 11111000111011010
C2(B,f3 1) = 1111100010011011111111000100110
C2(B,f4 1) = C2(B,f1 1)

In order to verify that any wi,C2 ∈ ΨR110, we must follow the path of
each word in the subset diagram (Figure 3) starting from universal set.
This way, the sequences of vertices are given as follows:

C2(A,f1 1) ≡ (15, 14, 14, 14, 14, 9, 9, 9, 9, 9, 9, 6, 1, 1, 2, 12, 9)
C2(A,f2 1) ≡ (15, 14, 14, 14, 14, 9, 9, 9, 6, 1, 1, 1, 1, 1, 2, 12, 9)
C2(A,f3 1) ≡ (15, 14, 14, 14, 14, 9, 9, 9, 6, 1, 1, 2, 12, 9, 9, 9, 9)
C2(A,f4 1) ≡ (15, 14, 14, 9, 9, 9, 6, 14, 9, 9, 9, 6, 1, 1, 2, 12, 9)
C2(B,f1 1) ≡ (15, 14, 14, 14, 14, 9, 6, 1, 1, 2, 12, 6, 1, 1, 2, 12, 9)
C2(B,f2 1) ≡ (15, 14, 14, 14, 14, 9, 9, 9, 6, 14, 14, 9, 6, 14, 9, 6, 1)
C2(A,f3 1)≡ (15, 14, 14, 14, 14, 9, 9, 9, 6, 1, 1, 2, 12, 9, 6, 14, 14, 14, 14, 14, 14,
14, 9, 9, 9, 6, 1, 1, 2, 12, 9)
C2(B,f4 1) ≡ C2(B,f1 1)

therefore they are accepted by its scalar subset diagram.
An important remark is that this general machine (the subset dia-

gram), similar to the de Bruijn diagrams, is not a linear one and therefore
any vertex can be a terminal state. However in the case of the subset
diagram, we need to start from the maximum subset while at the de
Bruijn diagram we could start from any vertex.

Therefore the regular language LR110 constructed from a subset of
regular expressions ΨR110 is verified with its subset diagram.

4 Final remarks

Altogether, the principal value of the scalar subset diagram is to establish
such things as:

1. The shortest excluded words, the occurrence of any one of which
creates a Garden of Eden configuration.

2. A maximum length for a minimal excluded word, which is the num-
ber of nodes in the portion of the subset diagram connected to the
full subset.

3. Whether a exclusion occurs in stages, as key segments are built up.
4. A regular expression describing excluded words.

Acknowledgements

First author thanks to EPSRC grant reference EP/D066174; and the
third author thanks the support of CONACyT with reference number
CB-2007/83554.

References

1. Cook, M. (2004) Universality in Elementary Cellular Automata, Complex
Systems 15 (1) 1–40.

2. Hurd, L.P. (1987) Formal Language Characterizations of Cellular Automa-
ton Limit Sets, Complex Systems 1 69–80.

3. Hopcroft, J.E. & Ullman, J.D. (1987) Introduction to Automata Theory
Languages, and Computation, Addison-Wesley Publishing Company.

4. McIntosh, H.V. (1991) Linear cellular automata via de Bruijn diagrams,
http://delta.cs.cinvestav.mx/∼mcintosh/oldweb/pautomata.html

5. McIntosh, H.V. (1999) Rule 110 as it relates to the presence of gliders,
http://delta.cs.cinvestav.mx/∼mcintosh/oldweb/pautomata.html.

6. McIntosh, H.V. One Dimensional Cellular Automata, by publish.

7. Minsky M. (1967) Computation: Finite and Infinite Machines, Prentice
Hall.

8. Mart́ınez, G.J. & McIntosh, H.V. (2001) ATLAS: Collisions of gliders like
phases of ether in Rule 110, http://uncomp.uwe.ac.uk/genaro/papers.
html

9. Mart́ınez, G.J., McIntosh, H.V., Seck Tuoh Mora, J.C., & Chapa Vergara,
S.V. Reproducing the cyclic tag systems developed by Matthew Cook
with Rule 110 using the phases fi 1, http://uncomp.uwe.ac.uk/genaro/
papers.html.

10. Mart́ınez, G.J., McIntosh, H.V., & Seck Tuoh Mora, J.C. (2006) Gliders
in Rule 110, Int. J. of Unconventional Computing 2 (1) 1–49.

11. Mart́ınez, G.J., McIntosh, H.V., Seck Tuoh Mora, J.C. & Chapa Vergara,
S.V. (2007) Rule 110 objects and other collision-based constructions, Jour-
nal of Cellular Automata 2 (3) 219–242.

12. Mart́ınez, G.J., McIntosh, H.V., Seck Tuoh Mora, J.C., & Chapa Vergara,
S.V. (2008) Determining a regular language by glider-based structures
called phases fi 1 in Rule 110, Journal of Cellular Automata 3 (3) 231–
270.

13. Moore, E.F. (1956) Gedanken Experiments on Sequential Machines, in
C. E. Shannon and John McCarthy (eds), Automata Studies, Princeton
University Press, Princeton, New Jersey.

14. Nordahl, M. (1989) Formal languages and finite cellular automata, Com-
plex Systems 3 63–78.

15. Seck Tuoh Mora, J.C., Chapa Vergara, S.V., Mart́ınez, G.J., & McIntosh,
H.V. (2005) Procedures for calculating reversible one-dimensional cellular
automata, Physica D 202 134–141.

16. Voorhees, B.H. (1996) Computational analysis of one-dimensional cellular
automata, World Scientific Series on Nonlinear Science, Series A, Vol. 15.

17. Wolfram, S. (1984) Computation Theory on Cellular Automata, Commu-
nication in Mathematical Physics 96 15–57.

18. Wolfram, S. (2002) A New Kind of Science, Wolfram Media, Inc., Cham-
paign, Illinois.

