
Cellular automaton supercolliders

Genaro J. Mart́ınez1,2, Andrew Adamatzky1

Christopher R. Stephens2

August 2, 2011

1 Unconventional Computing Centre, University of the West of England,
Bristol BS16 1QY, United Kingdom.

{genaro.martinez, andrew.adamatzky}@uwe.ac.uk
2 Instituto de Ciencias Nucleares and Centro de Ciencias de la Complejidad,

Universidad Nacional Autónoma de México, México.
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Abstract

Gliders in one-dimensional cellular automata are compact groups of non-
quiescent and non-ether patterns (ether represents a periodic background)
translating along automaton lattice. They are cellular-automaton anal-
ogous of localizations or quasi-local collective excitations travelling in a
spatially extended non-linear medium. They can be considered as binary
strings or symbols travelling along a one-dimensional ring, interacting with
each other and changing their states, or symbolic values, as a result of in-
teractions. We analyse what types of interaction occur between gliders
travelling on a cellular automaton ‘cyclotron’ and build a catalog of the
most common reactions. We demonstrate that collisions between gliders
emulate the basic types of interaction that occur between localizations in
non-linear media: fusion, elastic collision, and soliton-like collision. Com-
putational outcomes of a swarm of gliders circling on a one-dimensional
torus are analysed via implementation of cyclic tag systems.

Keywords: cellular automata, particles, travelling localizations, colli-
sions, beam routing, universality

1 Introduction

The era of unconventional computers — implementations of computing schemes
in physical, chemical and biological substrates, and interpretation of the be-
haviour of natural systems’ in terms of computation – has brought us a plethora
of original prototypes of future and emerging computing architectures. Some ex-
amples of this new paradigm are polymer- and conductive foam based extended
analog computers [42], chemical reaction-diffusion computers [21, 4], aromatic
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molecular computers [10], slime mould computers [50], micro-fluidic based com-
puters [20], enzymatic logical circuits [25], molecular arithmetical circuits [58]
to name but a few. Many of these novel computing devices work on the princi-
ple that information is represented by localised states of natural systems (phase
or diffusive waves, propagating pseudopodia, electron density, conformation)
which can then be represented by cellular automata or other discrete automata
models (at least in principle) [1]. Most models of unconventional computers
suffer, up to different degrees, from boundary problems. The systems are con-
fined to some experimental arena, e.g. test tube or a Petri dish, or even be
controlled and programmed by externally imposed geometrical constraints (e.g.
channels in excitable chemical computers). It would be incredible useful to pro-
duce a model which is self-contained, is not dependent on external constraints
and which can, subject to resources and energy supplied, function indefinitely.
A particle “super collider” may be the best candidate for such a universal model
of boundary free computation.

In his seminal paper “Symbol super colliders” [60] Tommaso Toffoli envis-
aged far fetching analogies between physical implementations of particle super
colliders, lattice gas and one-dimensional cellular automata. He suggested that
the concept of symbol super collider – where myriad of tokens run along in-
tersecting rings and interact with each other to produce new tokens – can be
used in designing novel types of nature-inspired computing devices [17, 59]. In
present paper we develop Toffoli’s ideas further and provide computational im-
plementations of particle ‘accelerator’ or test rigs, implemented in elementary
cellular automata.

The paper is structured as follows. One-dimensional cellular automata, ahis-
toric and with memory, are introduced in Sect. 2. The concepts of supercollider
and ballistic computing are presented in Sect. 3. Section 4 shows how essential
elements of collision-based computers can be implemented via glider interac-
tions in one-dimensional cellular automata, and computational capacities are
presented in Sect. 5. Outcomes of the presented results and directions for fur-
ther studies are discussed in Sect. 6.

2 One-dimensional cellular automata

A cellular automaton (CA) is a quintuple 〈Σ, ϕ, µ, c0, L〉 based on a one-dimensional
lattice L of cells, where each cell xi, i ∈ N , takes a state from a finite alphabet
Σ. A sequence s ∈ Σn of n cell-states represents a string or a global configura-
tion c on Σ. We write a set of finite configurations as Σn. Cells update their
states via an evolution rule ϕ : Σµ → Σ, such that µ represents a cell neigh-
bourhood that consists of a central cell and a number of neighbours connected
locally. There are |Σ|µ different neighbourhoods and if k = |Σ| then we have
kk

n

different evolution rules.
An evolution diagram for a CA is represented by a sequence of configurations

{ci} generated by the global mapping Φ : Σn → Σn, where a global relation is
given by as Φ(ct) → ct+1. c0 is the initial configuration. Cell states of a
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configuration ct are updated simultaneously by the evolution rule as:

ϕ(xti−r, . . . , x
t
i, . . . , x

t
i+r)→ xt+1

i . (1)

where i indicates cell position and r is the radius of neighbourhood µ. Thus,
the elementary basic CA class represents a system of order (k = 2, r = 1)
(in Wolfram’s nomenclature [61]), the well-known ECA. To represent a specific
evolution rule we write name of the rule in a decimal notation, e.g. ϕR110.

Conventional cellular automata are memoryless: the new state of a cell de-
pends on the neighbourhood configuration solely at the preceding time step of
ϕ. CA with memory are an extension of ECA in such a way that every cell xi
is allowed to remember its states during some fixed period of its evolution. CA
with memory have been proposed originally by Alonso-Sanz [5, 6, 7].

We implement a memory function φ as follow:

φ(xt−τi , . . . , xt−1
i , xti)→ si, (2)

where τ < t determines the degree of memory and each cell si ∈ Σ is a state
function of the series of states of the cell xi with memory up τ . To execute the
evolution we apply the original rule ϕ(. . . , sti−1, s

t
i, s

t
i+1, . . .) → xt+1

i . Thus in
CA with memory, while the mapping ϕ remains unaltered, historic memory of
all past iterations is retained by featuring each cell as a summary of its past
states from φ. We can say that cells canalize memory to the map ϕ [7].

Let us consider the memory function φ as a majority memory φmaj → si,
where in case of a tie given by Σ1 = Σ0 from φ we take the last value xi. So
φmaj function represents the classic majority function for three values [47] as
follows:

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a)

that represents the cells (xt−τi , . . . , xt−1
i , xti) and defines a temporal ring before

to get the next global configuration c. Of course, this evaluation can be for any
number of values. In this way, a number of functional memories may be used
such as: minority, parity, alpha, etc. (see [7]).

Evolution rules representation in ECA with memory as given in [30, 31] is
as follows:

φCARm:τ (3)

where CAR is a decimal notation of a particular ECA rule and m is a kind of
memory used given with a specific value of τ . Thus for example, the majority
memory (maj) incorporated in ECA Rule 30 employing five step of a cell’s
history (τ = 5) is denoted as φR30maj:5. The memory is a function of the CA
itself, see schematic explanation in Fig. 1.
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Figure 1: Illustration of cell-state transition in ECA (left) and ECA with mem-
ory (right).

3 Toffoli’s supercollider

In the late 1970s Fredkin and Toffoli developed a concept of a general-purpose
computation based on ballistic interactions between quanta of information that
are represented by abstract particles [60]. The Boolean states of logical vari-
ables are represented by balls or atoms, which preserve their identity when they
collide with each other. They came up with the idea of a billiard-ball model
of computation, with underpinning mechanics of elastically colliding balls and
mirrors reflecting the balls’ trajectories. Later Margolus developed a special
class of CA which implement the billiard-ball model. Margolus’ partitioned CA
exhibited computational universality because they simulated Fredkin gate via
collision of soft spheres [36].

u v

f

(a)

u0 v0

v1 u1

f

(b)

u v

uv
(c)

u v

u v
(d)

Figure 2: Basic schemes of ballistic collision between localizations representing
logical values of the Boolean variables u and v.

The following basic functions with two input arguments u and v can be
expressed via collision between two localizations:
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1. f(u, v) = c, fusion (Fig. 2a)

2. f(u, v) = u+ v, interaction and subsequent change of state (Fig. 2b)

3. fi(u, v) 7→ (u, v) identity, solitonic collision (Fig. 2c);

4. fr(u, v) 7→ (v, u) reflection, elastic collision (Fig. 2d);

To map Toffoli’s supercollider [60] onto a one-dimensional CA we use the
notion of an idealized particle p ∈ Σ+ (without energy and potential energy).
The particle p is represented by a binary string of cell states.

(a) (b) (c)

Figure 3: Representation of abstract particles in a one-dimensional CA ring.

Figure 3 shows two typical scenarios where particles pf and pS travel in a CA
cyclotron. The first scenario (Fig. 3a) shows two particles travelling in opposite
directions which then collide. Their collision site is shown by a dark circle in
(Fig. 3a). The second scenario demonstrates a typical beam routing where a
fast particle pf eventually catches up with a slow particle ps at a collision site
(Fig. 3b). If the particles collide like solitons [24], then the faster particle pf
simply overtakes the slower particle ps and continues its motion (Fig. 3c).

Typically, we can find all types of particles manifest in CA gliders, including
positive p+, negative p−, and neutral p0 displacements [44], and also composite
particles assembled from elementary localizations. Let us consider the case
where a quiescent state is substituted by cells synchronized together as an ether
(periodic background). This phenomenon is associated with ECA Rule 110
ϕR110.1 Its evolution space is dominated by a number of particles emerging in
various different orders, some of which are really quite complex constructions.
Consequently, the number of collisions between particles is increased. Each
particle has a period, displacement, velocity, mass, volume, and phase [44, 45].2

Figure 4 displays a typical collision between two particles in ϕR110. As a result
of the collision one particle is split into three different particles (for details please
see [37]). The pre-collision positions of particles determines the outcomes of the
collision.

1Rule 110 repository http://uncomp.uwe.ac.uk/genaro/Rule110.html
2A full description of particles in Rule 110 is available at http://uncomp.uwe.ac.uk/

genaro/rule110/glidersRule110.html
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Figure 4: Example of a particle collision in ϕR110. Particle p−
B̄

collides with
particle p−G giving rise to three new particles — p−F , p+

D2
, and p+

A3 — that are
generated as a result of the collision.

To represent particles on a given beam routing scheme (see Fig. 3), we do not
consider ether configuration in ϕR110 because this does not affect on collisions.
Figure 5 displays a one-dimensional configuration where two particles collide
repeatedly and interact as solitonic so that the identities of the particles are
preserved in the collisions. A negative particle p−F collides and overtakes a
neutral particle p−C1

. Figure 5a presents a whole set of cells in state 1 (dark
points) where the ether configuration makes it impossible to distinguish the
particles: p−F and p−C1

. However, we can apply a filter and thereby select particles
from their background ether (Fig. 5b).3 Space-time configurations of a cellular
automaton exhibiting a collision between particles p−F and p−C1

are shown in
Fig. 5c.

Filters selected in CA are a useful tool for understand “hidden” properties
of CA. This tool was amply developed by Wuensche in the context of automatic
classification of CA [63]. The filters were derived from mechanical computation
techniques [22], pattern recognition [57], and analysis of cell-state frequencies
[63]. Thus, a filter is a sequence of cells that have a high frequency in the
evolution space. Such d-dimensional string repeat periodically, coexisting with
any complex structure without altering or disturbing the global dynamics.

3Ring evolution was simulated with DDLab available in http://www.ddlab.org.
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(a) (b) (c)

Figure 5: Example of a soliton-type interaction between particles in one-
dimensional cellular automaton ϕR110: (a)–(b) two steps of beam routing, (c) ex-
act configuration at the time of collision.

4 Ballistic collisions in cellular automata

In this section we analyze examples of ballistic collisions between particles in
ECA and ECA with memory. Let us start with ECA with memory governed
by the rule φR22maj:4 [38]. There are only two types of particles in this rule
GφR22maj:4 = {gL, gR}. Their properties are easy to infer: Both particles have a
volume of a perfect square of 11×11 cells, a mass of 35 cells, and they translate
2 cells per 11 time steps (or iterations of CA evolution). The particle gL has a
negative slope with a velocity of − 2

11 and the particle gR has a positive slope
with a velocity of 2

11 .
The rule φR22maj:4 supports two types of ballistic collisions: fi(u, v) and

fr(u, v). Figure 6a shows how a number of soliton interactions can be synchro-
nized as a identity collision fi(u, v), where both particles can cross their own
trajectories. This result can be achieved by selecting a particular phase of each
particle as encoded by its initial condition. Different initial conditions lead to
different reactions [38]. For example, in Fig. 6b we can see particles undergo-
ing elastic collisions similarly to a lattice gas model [60]. This is a reflection
collisions fr(u, v).

particle velocity
−→w 2/2 = 1
←−w -2/2 = -1

go 0/4 = 0

ge 0/4 = 0

gun 0/32 = 0

Table 1: Properties of particles in rule ϕR54 [32].
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(a) (b)

Figure 6: Ballistic collisions in CA φR22maj:4: (a) identity or soliton collision,
and (b) reflections.

(a) (b)

Figure 7: Ballistic collisions simulating the identity relation, or a solitonic reac-
tion: (a) with ϕR54 and (b) with φR9maj:4.
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Figure 7 presents solitonic reactions (identity ballistic collision) for rules
ϕR54 (memoryless ECA) and φR9maj:4 (ECA with memory). The rule ϕR54 has
been studied in detail in [11, 22, 32, 33].4 In representing particles in ϕR54 as
GϕR54 = {−→w ,←−w , go, ge, gun}, we follow Boccara’s et al. notation [11]. Table 1
gives the relation between particles and velocity.5. In this way, to produce a
required reaction we must code a particular initial condition, where a −→w particle
is ready to collide with a ←−w particle and both particles collide with the same
phase with a stationary particle ge (Fig. 7a).

Figure 7(b) shows an ECA with memory which preserves identity ballistic
collision starting with any random initial condition. Thus, φR9maj:4 evolves
with two particles GφR9maj:4 = {−→p ,←−p }. The particles’ properties are easy to
calculate. The −→p particle has a volume of 5 × 6 cells, a mass of 12 cells, and
moves 2 cells in 5 generations (positive slope). While ←−p particle has a volume
of 5 × 3 cells, a mass of 7 cells, and moves 2 cells in 5 generations (negative
slope).

As the example above demonstrates, by using ECA and ECA with memory
we can experimentally study a variety of ballistic collisions.

5 Beam routings and computations

In this section we will exploit beam routing to produce some complex construc-
tions that are based on particle-collisions. An additional effort is necessary to
code initial conditions for every particle and recognize the most suitable phase
for each particle in order to produce the desired reactions. Also, we will show
how the beam routing can be used in design of computing based-collisions.

Let us consider a ECA with memory, rule φR30maj:8 [30]. We want to
implement a simple substitution function addToHead working on two strings
w1 = A1, . . . , An and w2 = B1, . . . , Bm, where n,m ≥ 1. For example, if
w1 = AAA, w2 = BBB and w3 = w1w2 then addToHead(|w2|) means produce
w3 = w2w1. To implement such a function in φR30maj:8 every quantum of data
is represented by a particle. Particles g1 and g2 are coded in order to reproduce
a soliton reaction. The codification is not sophisticated. However, a systematic
analysis of reactions is required. A periodic gap and one fixed phase between
particles is sufficient to reproduce addToHead function for any string AnBm.

Figure 8 shows the evolution of φR30maj:8 starting from an initial condition
coded by particles representing the string AAAAAAAABBBBBBBB. Using
function addToHead we produce the final string BBBBBBBBAAAAAAAA af-
ter 5,000 generations. The first snapshot (Fig. 8a) shows the initial configuration
and the first 391 generations, the middle snapshot (Fig. 8b) demonstrates how
string w1 acts on string w2 while preserving the information (soliton or identity
reaction), and the third snapshot (Fig. 8c) shows the final global configuration
(i.e. string w2w1 processed in parallel by φR30maj:8).

4Rule 54 repository in http://uncomp.uwe.ac.uk/genaro/Rule54.html
5Velocity is calculated as the number of cells a particle displaces in one unit of discrete

time.
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(a)

(b)

(c)

Figure 8: A simple substitution system processing the word A8B8 to B8A8

with φR30maj:8. The final required state is reached at the 5,000th generation by
synchronization of multiple soliton reactions.
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Figure 9: Beam routing performing identity reactions in φR30maj:8. A cycle
realizes its operation, two cycles reinitialize the beam state and the operations
can then be repeated.

Therefore a beam routing to represent such an operation in φR30maj:8 re-
quires two particles (as positrons but one slow and other fast respectively) with
the same orientation and one collision contact point on the beam routing. Thus
Fig. 9 illustrates how a beam routing is designed to produce such periodic col-
lisions.

Figure 10: Transition between two beam routing synchronizing multiple reac-
tions. When the first set of collisions are done a new beam routing is defined
with other particles, so that when the second set of collisions is done then one
returns to the initial condition of the first beam, constructing a meta-glider or
mesh in ϕR110.

In this way, we can design more complex constructions synchronizing mul-
tiple collisions with a diversity of speeds and phases on different particles. Fig-
ure 10 displays a more sophisticated beam routing design, connecting two of
beams and then creating a new beam routing diagram where edges represent a
change of particles and collisions contact point on ECA ϕR110. In such a tran-
sition, a number of new particles emerge and collide to return to the first beam,
thus oscillating between two beam routing forever. To better understand this
double beam routing dynamic, consider Fig. 11 where we see multiple collisions
between particles (first beam routing):

p+
A, p

+
A ↔ p−

B̄
, p−B , p

−
B

changing to the set of particles (second beam routing):

p+
A4 ↔ p+

E , p
+
Ē

defining two beam routing connected by a transition of collisions as:
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Figure 11: Synchronization of multiple collisions in ϕR110 on a ring of 1,060
cells in 1,027 generations, starting with 50 particles from its initial condition.

(p+
A, p

+
A ↔ p−

B̄
, p−B , p

−
B)→ (p+

A4 ↔ p+
E , p

+
Ē

), and

(p+
A4 ↔ p+

E , p
+
Ē

)→ (p+
A, p

+
A ↔ p−

B̄
, p−B , p

−
B).

So we see that a beam routing representation not only helps in designing
collisions but also to implement computation.

We now explain the function of a cyclic tag system (CTS) in ϕR110 in beam
routing terms and discuss a number of theoretical implications.

It is well known that ECA ϕR110 is universal [13, 61]. However, a number
of details about its construction, e.g. a cyclic machine, are uncertain [46].6

Simplified implementations of universal computation in CTS are provided in [14,
51].

6A complete description of CTS working in ϕR110 is available at http://uncomp.uwe.ac.

uk/genaro/rule110/ctsRule110.html
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particle velocity

A 2/3 ≈ 0.666666

B -2/4 = -0.5

B̄n -6/12 = -0.5

B̂n -6/12 = -0.5

C1 0/7 = 0

C2 0/7 = 0

C3 0/7 = 0

D1 2/10 = 0.2

D2 2/10 = 0.2

En -4/15 ≈ -0.266666

Ē -8/30 ≈ -0.266666

F -4/36 ≈ -0.111111

Gn -14/42 ≈ -0.333333

H -18/92 ≈ -0.195652

gun -20/77 ≈ -0.259740

Table 2: Properties of particles in ϕR110.

ECA ϕR110 has a unique complexity due to great number of particles that
emerge in the automaton evolution. Table 2 presents a summary of the basic
particle properties in ϕR110, following Cook’s nomenclature. We can appreciate
how diverse they are. There are even particles that can expand size forever
which increases the number of collisions that we can produce on this ECA.

Initially, a CTS works as a traditional tag system [47], i.e., as a substitution
system reading the first symbol on the tape, deleting and putting new symbols.
CTS are new machines proposed by Cook [13] as a tool to implement computa-
tions in ϕR110. CTS are a variant of tag systems: they have the same action of
reading a tape in the front and adding characters at the end, nevertheless there
are some new features as follows:

1. A CTS needs at least two letters in its alphabet (µ > 1).

2. Only the first character is deleted (ν = 1) and its respective sequence is
added.

3. If the machine reads a character zero then the production rule is always
null (0→ ε, where ε represents the empty word).

4. There are k sequences from µ∗ which are periodically accessed to specify
the current production rule when a nonzero character is taken by the
system. Therefore the period of each cycle is determinate by k.

This way a cycle determines a partial computation over the tape. No par-
ticular halt conditions are specified in the original paper [13], possibly because
the halting is a direct consequence of tag systems. Let us see some samples of a
CTS working with µ = 2, k = 3 and the production rules: 1→ 11, 1→ 10 and
1→ ε.
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3A4_4A 1Ele_C20Ele_C2 1BloP_Eb 1BloS_Eb0Blo_EbSepInit_EEb

Cook - ANKOS

Figure 12: A diagram of a CTS working in ϕR110.

Our intention is to represent CTS function in ϕR110 based beam routing
of symbols. We employ transition beam routings to explain critical changes
that occur due to collisions and sets of particles that are present on each beam
routing at every instant description of the machine.

We start with a description of main stages of encoding packages of particles
in their initial condition. This will be an equivalent of beam routing diagram.
We will first show how particles and their collisions emulate a CTS in ϕR110. We
use packages of particles to represent data and operators. We read, transform
and delete data in the tape using reactions between the particles. The approach
is a delicate one and requires a laborious task of setting initial configurations
for the particles in the beams. A diagram of such representation is shown in
Fig. 12, particular features of the diagram are explain below.

A construction of the CTS in ϕR110 can be partitioned, essentially, in three
parts:

• First, is the left periodic part, controlled by packages of 4 A4 particles.
This part is static and controls the production of 0’s and 1’s.

• The second part is the center, determining the initial value in the tape.

• The third one is the right cyclic part, which has the data to process, adding
a leader component which specifies data added to or erased from the tape
in the evolution space.

In the left part, the four packages of A4 (Fig. 13c) particles must be care-
fully explained because although they are static, their phases change periodi-
cally. The important point is to implement these components in defining both

14



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: Beam routing codification representing package of particles which
reproduces a CTS in ϕR110.
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distances and phases, because a distinct phase or a distance induces an undesir-
able reaction; in fact all components obey this restriction because every glider
of each component must be correctly aligned.

The central part is constituted by an initial 1 on the tape represented by a
package of four C2 particles. This way, an element 1Ele C2 (Fig. 13b) represents
a 1 and the element 0Ele C2 (Fig. 13a) represents a 0 in the tape.

The element 0Blo Ē is formed by 12Ē particles. For the 1Blo Ē element,
Cook establishes the existence of two components to represent 1’s: 1BloP Ē
(Fig. 13f) named primary and 1BloS Ē (Fig. 13g) named standard. In essence
both blocks produce the same element 1Add Ē, although coming from different
intervals. The reason to use both blocks is that ϕR110 is not symmetric; thus, if
we use only one element then although we would obtain a good production in
the first collision, generating an element 1Add Ē, when the second package of
4 A4 particles finds the second block, the system is completely destroyed.

A leader element SepInit EĒ (Fig. 13d) is important in order to separate
packages of data and determine their incorporation into of the tape.

The elements 1Add Ē (Fig. 13i) and 0Add Ē (Fig. 13h) are produced by two
previous different packages of data. An element 1Add Ē must be generated by
a block 1BloP Ē or by 1BloS Ē. This way, both elements can produce the same
element. While an element 0Add Ē is generated by a block 0Blo Ē (Fig. 13e).

Finally, in terms of periodic phases, this CTS can be written as follow:

left: {649e-4 A4(F i)}*, for 1 ≤ i ≤ 3 in sequential order

center: 246e-1Ele C2(A,f1 1)-e-A3(f1 1)

right: {SepInit EĒ(#,fi 1)-1BloP Ē(#,fi 1)-SepInit EĒ(#,fi 1)-1BloP Ē(#,fi 1)-
0Blo Ē(#,fi 1)-1BloS Ē(#,fi 1)}* (where 1 ≤ i ≤ 4 and # represents a
particular phase).

For a complete and full description of such reproduction by phases fi 1,
please see [46].

To get a CTS emulation in ϕR110 by beam routings, we will use connections
between beam routing, as we have proposed in Fig 10.

Transitions between beam routings connect each set of collisions to enter to
the next beam routing diagram.

We need some fine details to get a CTS operation by beam routings. Fig-
ure 14 shows the general diagram to reproduce a CTS by particle collisions in
ϕR110 with beam routing transitions. While Fig. 13 describes each component
to code particles in ϕR110, Fig. 14 display how to connect such components and
control the transition of collisions.

Some notes are necessary to better understand this schematic diagram. For
the components 1Ele C2 and 0Ele C2 they are compressed only for one dark
circle (that represents the point of collisions). Both elements are constituted for
four C2 particles in different distances, although they have a static position p0

that can be confined to this dark circle, as p0
1 and p0

0 respectively.
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Figure 14: Beam routing machine transitions to simulate CTS in ϕR110.
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When a leader component (SepInit EĒ) is transformed, given previous bi-
nary value on the tape, it collides with p0

? component, i.e. a p0
1 or p0

0 element.
If p0

? is 0, then a cascade of collisions start to delete all components that come
with three particles successively and change this reaction to reach a new leader
component and return to the beginning. But, if p0

? is 1 then a cascade of trans-
formations dominated by additional particles p0 starts, in order to reach the
next leader component. Here, we have more variants because pre-transformed
package of particles is encoded to binary values that is then included on the
machine tape. If a block of particles is 1BloP Ē or 1BloS Ē this means that
such a component will be transformed to one 1Add Ē element. But, if a block of
particles is 0Blo Ē, then such a component will be transformed to 0Add Ē ele-
ment. At this stage, when both components are prepared then a binary value is
introduced on the tape, a 1Add Ē element stores a 1 (1Ele C2), and a 0Add Ē
element stores a 0 (0Ele C2), which eventually is deleted for the next leader
component and starts a new cycle in the CTS machine.

The relevant point here is how to control and code particles by beam rout-
ings. That will offer a better chance to perform a computation with this archi-
tecture before implementing the complicated and laborious task of setting up
initial condition. Of course, such an idea can be carried out in any CA handling
signals, waves, particles, gliders or mobile self-localizations [1, 2, 3, 9, 12, 24,
26, 27, 29, 32, 34, 35, 36, 43, 48, 49, 52, 56, 23].

The package particles codification for a CTS in [61, 46] is represented for
the expression (s1s101)+ while that in [13] is represented for the expression
(s111s0)+. Finally in all cases, this CTS beam routing may simulate such
operations.

6 Summary

We advanced a concept of symbol super collider [60] and implemented it in one-
dimensional cellular automata. Two types of automaton rings were considered
— elementary cellular automata (binary cell state, ternary neighbourhoods) and
elementary cellular automata with memory. We demonstrated that, for certain
rules of cell-state transition functions, the automata exhibit a wide range of
particles (mobile self-localizations or gliders) in their evolution. High degree
of morphological diversity and richness of collision dynamics of the particles in
memory-enriched cellular automata make them particularly promising objects
for constructing computational schemes.

In present paper we advanced over twenty years old studies in identifying
and classifying gliders and localisations in CA. There is a number of approaches
varying in their degrees of efficiency and discovery potentials. Thus, Wuensche
successfully classified CA evolution rules with his Z parameter, and provided
power structures of a substantial number of glider-generating rules [63]. Other
studies focus on specification of sets of strings as patterns and gliders. For exam-
ple, Redeker developed a compact algebraic representation of 1D CA evolution,
known as flexible time. Suing his approach one can construct specific periodic
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structures [54]. Evolution programming techniques are also proved to be very
successful, e.g. in situations when a genetic algorithm undertakes a search for
gliders and patterns on fixed small arrays of bits [55, 62]. As well, Freire et. al
developed an approach to select specific sets of vectors, initial configurations,
that determine development of gliders and localised patterns [18, 19]. Finally,
the de Bruijn diagrams is a time-tested and reliable tool to classify sets of pe-
riodic structures or gliders using exhaustive approach [40, 41]. Said that in
present paper we did not aim to deal with identification of mobile patterns
but rather consider glider sets in collision-based computing perspective. Con-
cretely, we only aimed to develop the idea of cyclotrons as an abstract model of
super-colliders [60].

We proved experimentally that the dynamics of these particles support all
basic types of ballistic collisions and consequently that the cellular automata
cyclotrons can be used to implement certain schemes and operations of collision-
based computing. We designed schemes with several beams of particles and
provided a means of beam routing and programming interactions between par-
ticles. To demonstrate the high degree of computational universality of cellular
automaton ’cyclotrons’ we took into account that each particle is essentially a
finite-size binary string travelling along a one-dimensional lattice ‘cyclotron.’
When a string with lower velocity overtaken by a string with higher velocity
the content of one or both strings can be modified. Thus, for carefully selected
initial configuration of particles and types of particles on a ring, the cellular
automaton cyclotron imitates a cyclic tag systems, and thus is computationally
universal.

What are advantages of the proposed approach? In cellular-automaton mod-
els particles can run along the rings indefinitely. With suitable beam routing
schemes some particles (the results of computation or the products of reactions)
can be removed from the system and new particles can be added. The cellular-
automaton super collider is a universal computing devices based on interactions
between particles due to the particles’ different speeds. This give our constructs
an enormous advantage when compared to more “traditional” constructs, where
particles collide only due to different orientations of velocity vectors. Also most
existing unconventional designs of universal computing devices have certain is-
sues of boundary conditions, e.g. infinite versus finite, the cellular-automaton
super-colliders by using periodic boundary conditions removes the effect of any
boundary being equivalent to an infinite periodic system.

The theoretical models of cellular-automaton super colliders open new per-
spectives in laboratory implementations of collision based computing devices.
The opportunities are virtually endless. Hundreds of chemical, physical and
biological systems exhibit travelling localizations in their dynamics. Examples
include co-aligned dipole groups in tubulin microtubules (e.g. [53, 39], kinks,
breathers and solitons in molecular chains and polymers (e.g. [16], phasons
in quasi-crystals [28], kinks in ferromagnets [15], dissipative solitons in gas-
discharge systems [8], localizations of electron density in monolayers of aromatic
molecules [10], wave-fragments in excitable chemical media [4]. We envisage that
molecular chains and polymers would be the best candidates for experimental
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laboratory realisation of symbol super colliders. This will be a subject of further
studies.
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