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Abstract

Reversible cellular automata are discrete invertible dynamical systems determined by

local interactions among their components. For the one-dimensional case, there are

classical references providing a complete characterization based on combinatorial prop-

erties. Using these results and the simulation of every automaton by another with

neighborhood size 2, this paper describes other types of invertible behaviors embedded

in these systems different from the classical one observed in the temporal evolution. In

particular spatial reversibility and diagonal surjectivity are studied, and the generation

of macrocells in the evolution space is analyzed.
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1 Introduction

Cellular automata are discrete dynamical systems in time and space, whose behavior is

based on local interactions defined among their components. These systems were proposed

by John von Neumann for proving the possibility of constructing self-reproducing machines

[von Neumann, 1966]. Since this original work, several issues and variations of the model

have been studied, one of this topics is the specification, characterization and enumera-

tion of reversible cellular automata. The complexity in these systems is given by the non-

invertible local mappings among their components which induce a global reversible behavior;

therefore their study has been widely developed both for understanding relevant theoret-

ical questions and for practical applications in several fields in physics, chemistry, biol-

ogy and engineering [Wolfram,1986], [Toffoli & Margolus,1987], [Toffoli & Margolus, 1991],

[Kari, 1992a], [Chopard & Droz, 1998], [Adamatzky, 2003].

Classical references in the theoretical analysis are the papers by Myhill [1963] and Moore

[1970] investigating Garden-of-Eden structures which cannot be produced by the local inter-

actions of a cellular automaton and, by Amoroso and Patt [1972] giving a first computational

procedure for enumerating reversible automata; this line of research has been followed in

several works [Hillman, 1991], [Moraal, 2000], [Boykett, 2004], [Seck-Tuoh et al., 2005].

A complete local characterization of reversible cellular automata is developed for the one-

dimensional case by Hedlund [1969] and Nasu [1978] using a combinatorial, topological and

graph-theoretical approach. In these systems, reversibility is given in the temporal sense;

Boykett [2003], Hillman [2004] and Boykett [2006] have studied reversible automata from an

algebraic perspective, some of their results suggest the existence of other types of reversible

behaviors different from the classical one.

This paper applies the results defined by Hedlund and Nasu in order to characterize re-

versible behaviors distinct from the temporal one in one-dimensional cellular automata, in

particular we expose properties for obtaining spatially reversibility, formation of macrocells
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and diagonal surjective dynamics. These results are generalized by modeling every one-

dimensional cellular automaton by another with neighborhood size 2, thereby we just need

to take this kind of automata to understand the other cases.

This work is an extension of our research about reversible cellular automata [Seck-Tuoh, 2002],

[Seck-Tuoh et al., 2003], [Seck-Tuoh et al., 2006], in particular improving the conclusions

obtained in [Seck-Tuoh et al., 2004]; the intention of this manuscript falls into the theoretical

and experimental study, expecting that other researches may find some helpful conclusions

which may be applied both for academic and practical interests.

The paper is organized as follows: Sec. 2 gives the basic concepts of one-dimensional

cellular automata; Sec. 3 explains the representation of any cellular automaton by another

with neighborhood size 2 for simplifying the study and presents the local properties for

the reversible case. Section 4 describes both spatial reversibility and the composition of

macrocells in the evolution space; Sec. 5 exposes distinct diagonal surjective behaviors in

reversible automata and Sec. 6 exposes the concluding remarks of the work. For clarification,

illustrative examples are provided during the progression of the paper.

2 One-Dimensional Cellular Automata

A cellular automaton A = {ms, mn,ϕ} consists of a finite set of states S with |S| = ms and

neighborhood size mn establishing an evolution rule ϕ : Smn → S. For any m ∈ Z+ let Zm

be the set of integers mod m. Thus given mc ∈ Z+, an initial configuration c0 : Zmc
→ S is

provided; if time is understood, a configuration will be only defined by c. Let ci be the cell

at position i modmc in c and let γ(ci) be the state at cell ci.

In this paper periodic boundary conditions are taken concatenating cmc−1 to c0. Let ni =

γ(ci) . . . γ(ci+mn−1) be a neighborhood of the automaton; hence we have mc neighborhoods

in c and neighborhoods ni and ni+1 overlap in mn − 1 states.

3



Time advances in discrete steps, the dynamics of A is given applying the evolution rule

over all the neighborhoods in ct, where ϕ(nt
i) = γ(ct+1

i ); this state is centered below nt
i.

Thusly a new configuration ct+1 : Zmc
→ S is obtained and ϕ induces a global mapping

Φ : Smc → Smc .

Definition of the evolution rule can be extended for larger sequences of states; for each

m ≥ mn and every v ∈ Sm, ϕ(v) = w ∈ Sm−mn+1 applying ϕ over all the neighborhoods

forming v.

The evolution rule is represented by a matrix Mϕ where rows and columns indices are the

sequences in Smn−1; entry (s1w, ws2) = s3 in Mϕ if ϕ(s1ws2) = s3 with w ∈ Smn−2 and

si ∈ S for 1 ≤ i ≤ 3. Matrix Mϕ will be useful to describe non-classical reversible and

surjective behaviors.

3 Properties of Reversible Automata

Before presenting the properties of reversible one-dimensional cellular automata, a relevant

result established independently by Kari [1992b] and Boykett [1997] will be explained. This

deduction is worthwhile to simplify the study in the rest of the paper.

For any w1, w2 ∈ Smn−1 it is hold that ϕ(w1w2) ∈ Smn−1; in this way the evolution rule

determines a mapping ϕ : S2mn−2 → Smn−1. Let us take a new set of states U such

that |U | = mu = mmn−1
s , hence a bijection α : Smn−1 → U can be defined such that

υ = α ◦ ϕ ◦ α−1 and υ : U2 → U . Figure 1 presents the case for a neighborhood size 3.

Thus any cellular automaton A = {ms, mn,ϕ} can be simulated by another A′ = {mu, 2, υ};

therefore in the rest of this paper we shall only analyze cellular automata with neighborhood

size 2 because the other cases can be represented by this one. In particular, rows and columns

indices in Mυ are the states in U and each entry (u1, u2) = u3 iff υ(u1u2) = u3 for ui ∈ U ,
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Figure 1: A neighborhood size 3 simulated by a neighborhood size 2.

1 ≤ i ≤ 3.

A cellular automaton is reversible if its global behavior is reversed by the action of an-

other cellular automaton (the inverse one). Since each can be simulated by another with

neighborhood size 2, we can conclude that both automata hold that mn = 2.

Formally a reversible automaton is defined by AR = {ms, 2,ϕ, lϕ, rϕ} and its inverse is

analogously described by A−1
R = {ms, 2,ϕ−1, lϕ−1, rϕ−1} such that for any c ∈ Smc , if

Φ(c) = c′ in AR then Φ−1(c′) = c in A−1
R . Definition of AR has two additional parameters lϕ

and rϕ known as Welch indices, these invariant positive integers will be useful for describing

the local properties of these systems; in order to facilitate their explanation, some definitions

about the preimages of finite sequences are given.

For m ∈ Z+ and every w ∈ Sm−1, let Λ(w) = {v : v ∈ Sm,ϕ(v) = w} be the set of ancestors

of w. For every w ∈ Sm, let Lϕ(w) = {s ∈ S | ∃ v ∈ Km such that sv ∈ Λ(w)} be the left

Welch set of w with regard of ϕ; analogously let Rϕ(w) = {s ∈ S | ∃ v ∈ Sm such that vs ∈

Λ(w)} be the right Welch set of w. Reversible automata are fully characterized by Hedlund

[1969] and Nasu [1978]; in particular demonstrating the following three properties:

Property 1 For every m ∈ Z+ and each w ∈ Km, |Λ(w)| = ms.

Property 2 For every m ∈ Z+ and each w ∈ Km, |Lϕ(w)| = lϕ, |Rϕ(w)| = rϕ and

lϕrϕ = ms.
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Property 3 For every m ∈ Z+ and any w1, w2 ∈ Sm, |Rϕ(w1) ∩ Lϕ(w2)| = 1.

These features define as well a particular structure for Mϕ when the reversible automaton

and its inverse have neighborhood size 2; in this case every state appears in ms entries of

Mϕ, moreover each state occurs at the same rϕ positions in exactly lϕ rows.

In this way for a reversible automaton AR we can define a transpose automaton AT
R with

evolution rule ϕT holding that MϕT = MT
ϕ . Since the previous properties show that the

behavior of reversible automata depends on the cardinality and elements of Welch sets but

not on their position, a straightforward conclusion is that AT
R is also reversible. Based on

these results, Secs. 4 and 5 expose unconventional bijective and surjective behaviors in

reversible automata.

4 Spatial Reversibility

Classically in a cellular automaton the invertible behavior is viewed in the temporal sense,

where the transition from ct into ct+1 is reversible. Based on the properties previously

exposed, another invertible behavior is described in the spatial direction.

Definition 1 A reversible cellular automaton AR is spatially reversible if there exists an-

other reversible automaton AT = {ms, 2, τ, lτ , rτ} such that for every i ∈ Zmc
and each

t ∈ Z it is fulfilled that τ(γ(ct−1
i+1)γ(ct+1

i )) = τ−1(γ(ct−1
i )γ(ct+1

i−1) = γ(ct
i) (Fig. 2).

In order to analyze spatial reversibility, additional features about the cardinality of Welch

sets are described; some of them using the spatial and temporal coordinates of cells in a

given configuration. Let us define Γ(ct
i) ⊆ S as the set of possible states assigned to ct

i.
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Figure 2: Cells defining spatial reversibility.

For each s ∈ S and any state q2 ∈ Rϕ(s), it is fulfilled that ϕ(q1q2) = s for every q1 ∈ Lϕ(s)

in order to hold with Property 1. In this way by Property 2, for a fixed γ(ct
i) we have that

|Γ(ct−1
i )| = lϕ and |Γ(ct−1

i+1)| = rϕ. Taking now ϕ−1, |Γ(ct+1
i−1)| = lϕ−1 and |Γ(ct+1

i | = rϕ−1 .

Let us set Γ(ct
i−1) = S and a fixed γ(ct

i), hence by Property 2 |Γ(ct+1
i−1)| = rϕ; analogously if

we assign Γ(ct
i+1) = S we have that |Γ(ct+1

i )| = lϕ. Therefore lϕ−1 = rϕ and rϕ−1 = lϕ.

The last observation implies that for a fixed γ(ct
i), |Γ(ct−1

i+1)| = rϕ and |Γ(ct+1
i )| = lϕ;

therefore these sets hold with Properties 1 and 2. Thus only two additional features must

be considered to know whether the automaton is spatially reversible:

• Reviewing Property 3.

• Checking that τ and τ−1 are well-defined rules 1.

This revision can be executed applying the following two conditions:

1. For any q1, q2 ∈ S, |Lϕ(q1) ∩ Lϕ−1(q2)| = 1 and |Rϕ(q1) ∩ Rϕ−1(q2)| = 1.

2. For any q1, q2 ∈ S, there are not q3, q4 ∈ S such that:

• q3 ∈ Lϕ(q1) ∩ Lϕ(q2) and q4 ∈ Lϕ−1(q1) ∩ Lϕ−1(q2)

1That is, that every state has ms preimages in both rules
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or

• q3 ∈ Rϕ(q1) ∩ Rϕ(q2) and q4 ∈ Rϕ−1(q1) ∩ Rϕ−1(q2)

Condition 2 examines if there are two states sharing the same ancestor neighborhood in τ

and τ−1, opposite to the definition of a cellular automaton. The above conditions provide

an algorithm O(m3
s) for inspecting spatial reversibility.

Supplementary results can be determined depending on the initial specification of Welch

sets. Definition 1 arbitrary specifies for AT that left cells of neighborhoods are those placed

at time t − 1 both for τ and τ−1; in this way for every s ∈ S we have that Lτ (s) = Rϕ(s)

and Rτ (s) = Rϕ−1(s). As a consequence for a reversible automaton AR, if Lϕ(s) = Rϕ−1(s)

hence Mτ = MT
ϕ ; therefore AT = AT

R. Analogously Lτ−1(s) = Lϕ(s) and Rτ−1(s) =

Lϕ−1(s); consequently if Rϕ(s) = Lϕ−1(s) thence τ−1 = ϕ and A−1
T = AR. For instance,

take AR = {4, 2,ϕ, 2, 2} where matrices Mϕ, Mϕ−1 and their respective Welch sets are

illustrated in Table 1.

Mϕ Mϕ−1 Welch sets
0123 0123 State s Lϕ(s) Rϕ(s) Lϕ−1(s) Rϕ−1(s)

0 1010 0 1133 0 {0,1} {1,3} {1,2} {0,1}
1 1010 1 0022 1 {0,1} {0,2} {0,3} {0,1}
2 2323 2 0022 2 {2,3} {0,2} {1,2} {2,3}
3 2323 3 1133 3 {2,3} {1,3} {0,3} {2,3}

Table 1: Evolution rule and Welch sets of an spatially reversible automaton.

Table 1 shows that for every s ∈ S, Lϕ(s) = Rϕ−1(s); therefore AT = AT
R. An example

of this spatial reversible behavior is depicted in Fig. 3, τ and τ−1 can be identified using

MT
ϕ . Spatial reversibility is general for any reversible automaton with a Welch index equal

to 1; let us take AR with lϕ = 1, this implies by Properties 1 and 2 that rϕ = ms leading as

well that lϕ−1 = ms and rϕ−1 = 1. This assertion indicates that both Lϕ(s) = Rϕ−1(s) and

Rϕ(s) = Lϕ−1(s) for each s ∈ S, as result AR is spatially reversible; in particular AT = AT
R,

A−1
T = AR in consequence A−1

R = AT
R.

8



Figure 3: Spatial reversible behavior produced by rules in Table 5.

Spatial reversibility is a conserving process where there is not lost of information in the

spatial sense. A concrete case of reversible automata which is not spatially reversible is the

one producing the so-called macrocells [Brown, 1987] [McIntosh, 1990]; informally they are

periodic structures isolated by barriers in the evolution of the automaton.

Welch sets offer a way for detecting non-spatial reversible automata which besides are able

to form macrocells; given an automaton AR if there exists s ∈ S such that Lϕ(s) = Lϕ−1(s)

and Rϕ(s) = Rϕ−1(s); a macrocell can be defined. Choose 0 ≤ i1 < i2 < mc such that

γ(c0
i ) = s for i ∈ {i1, i2}. This implies that γ(c1

i−1) ∈ Lϕ(s) and γ(c1
i ) ∈ Rϕ(s); accordingly

γ(c2
i−1) = s. In general γ(c2t+1

i−(t+1)) ∈ Lϕ(s), γ(c2t+1
i−t ) ∈ Rϕ(s) and γ(c2t

i−t) = s, delimitating

the barriers of a macrocell. For instance, take AR = {4, 2,ϕ, 2, 2} in Table 2.

Mϕ Mϕ−1 Welch sets
0123 0123 State s Lϕ(s) Rϕ(s) Lϕ−1(s) Rϕ−1(s)

0 1221 0 1122 0 {1,3} {1,2} {1,3} {1,2}
1 1001 1 3003 1 {0,1} {0,3} {0,2} {0,1}
2 3223 2 1122 2 {0,2} {1,2} {0,2} {2,3}
3 3003 3 3003 3 {2,3} {0,3} {1,3} {0,3}

Table 2: Reversible automaton able to form macrocells.

In Table 2 we can see that Lϕ(0) = Lϕ−1(0) and Rϕ(0) = Rϕ−1(0); in this way a vertical

macrocell can be defined using state 0. Figure 4 shows an example of this feature in the

evolution of the automaton.
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Figure 4: Vertical macrocell (lightgray cells) delineated by state 0 and its Welch sets (dark-
gray cells).

5 Diagonal Surjectivity

Other particular case of unconventional surjectivity can be observed on the diagonal di-

rection in the evolution of a reversible automaton, going from the upper-right side to the

lower-left one 2.

Definition 2 A reversible automaton AR is diagonal surjective if for any m ∈ Z+ and 0 ≤

j < m the diagonal sequence γ(ct+j+1
i−j ) and γ(ct+m

i−m) define uniquely the diagonal sequence

γ(ct+j
i−j) (Fig. 5).

A direct result is that every reversible automaton is diagonal surjective; notice that γ(ct+m−1
i−m+1)

is uniquely defined by ϕ−1(γ(ct+m
i−m) γ(ct+m

i−m+1). From here for all s ∈ Γ(ct+m−1
i−m+2), the map-

ping ϕ−1(γ(ct+m−1
i−m+1), s) yields the same result carrying out with Property 1. Thus γ(ct+m−2

i−m+2)

2These results can be also applied in the opposite diagonal direction.
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Figure 5: In a diagonal surjective automaton, the state of gray cells is defined by those in
the white ones.

is uniquely defined. The generalization of this process establishes the property.

Thus the states in a diagonal sequence depend on the contiguous right ones; in fact the

current state establishes the previous one in the desired diagonal. Following this idea, a

stronger property can be defined where once specified the md first diagonal states, the rest

of them are fixed.

Definition 3 A reversible automaton AR is md-diagonal surjective if for any m ≥ 2 with

0 ≤ j < m and each diagonal sequence γ(ct+j+1
i−j ) there exists md ∈ Z+ with md < m such

that for 1 ≤ k ≤ md, the sequence of sets Γ(ct+m−k+1
i−m+k−1) defines a unique sequence γ(ct+p

i−p)

for 0 ≤ p ≤ m − md.

Definiton 3 says that it does not matter what states are in cells ct+m−k+1
i−m+k−1, the remaining

ones in the diagonal are equally specified. In order to complement Definition 3, if for every

m ∈ Z+ we cannot find some md such that the automaton is md-diagonal surjective, we say

that it is ℵ-diagonal surjective. Certain families of reversible automata can be characterized
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using Definition 3 due to the distinctive attributes of their Welch sets.

The first remark is that every AR = {ms, 2,ϕ, 1, ms} is 1-diagonal surjective; observe that

for each sequence γ(ct+j+1
i−j ) and every state in Γ(ct+m

i−m) it is fulfilled that |Γ(ct+j
i−j)| = lϕ = 1,

then the sequence γ(ct+p
i−p) is uniquely established for 0 ≤ p ≤ m − 1.

Additional two cases can be typified when both Welch indices are different from 1, one with

minimum and another with maximum diagonal surjectivity.

When for every s ∈ S and for each {q1, q2} ⊆ Lϕ(s) it is satisfied that Rϕ(q1) = Rϕ(q2) hence

the automaton is 2-diagonal surjective. For this note that γ(ct+m−1
i−m+1) = ϕ(γ(ct+m

i−m) γ(ct+m
i−m+1));

since lϕ ≥ 2, |Γ(ct+m−k
i−m+k)| ≥ 2 for k ∈ {0, 1}. This is why the automaton is at least 2-diagonal

surjective.

Seeing that for every s ∈ Γ(ct+m−1
i−m+1) Rϕ(s) is the same, so |Γ(ct+m−2

i−m+2)| = 1 and consequently

|Γ(ct+p
i−p)| = 1 for 0 ≤ p ≤ m − 2, showing that the automaton is 2-diagonal surjective. For

instance, take the automaton AR = {4, 2,ϕ, 2, 2} in Table 3.

Mϕ Mϕ−1 Welch sets
0123 0123 State s Lϕ(s) Rϕ(s) Lϕ−1(s) Rϕ−1(s)

0 3300 0 2332 0 {0,2} {2,3} {1,3} {0,3}
1 1122 1 0110 1 {1,3} {0,1} {1,3} {1,2}
2 3300 2 2332 2 {1,3} {2,3} {0,2} {0,3}
3 1122 3 0110 3 {0,2} {0,1} {0,2} {1,2}

Table 3: Evolution rules and Welch sets of a 2-diagonal surjective automaton

Table 3 shows that all states in each left Welch set have identical right Welch sets. As

example we shall take a fixed diagonal sequence of 7 cells in Fig. 6 for illustrating the

2-diagonal surjectivity.

The last case is produced when for every state s ∈ S and each {q1, q2} ⊆ Lϕ(s) it is carried

out that Rϕ(q1) ∩ Rϕ(q2) = ∅. In this situation as in the previous one |Γ(ct+m−k
i−m+k | ≥ 2 for

k ∈ {0, 1}. Since for every {q1, q2} ⊆ Γ(ct+m−1
i−m+1) Rϕ(q1) ∩ Rϕ(q2) = ∅, so |Γ(ct+m−2

i−m+2)| > 1
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Figure 6: For the diagonal sequence 2301203 and all possible states in the lightgray cells,
states in the darkgray ones are the same in the evolution of the automaton.

and the automaton is at least 3-diagonal surjective. The generalization of this process shows

that |Γ(ct+m−k
i−m+k)| > 1 for 0 ≤ k ≤ m and each m ∈ Z+, hence the automaton is ℵ-diagonal

surjective. For instance, take the automaton AR = {4, 2,ϕ, 2, 2} in 4.

Mϕ Mϕ−1 Welch sets
0123 0123 State s Lϕ(s) Rϕ(s) Lϕ−1(s) Rϕ−1(s)

0 2323 0 2200 0 {1,2} {0,2} {0,2} {2,3}
1 0303 1 1331 1 {2,3} {1,3} {1,3} {0,3}
2 0101 2 2200 2 {0,3} {0,2} {0,2} {0,1}
3 2121 3 1331 3 {0,1} {1,3} {1,3} {1,2}

Table 4: Evolution rules and Welch sets of a ℵ-diagonal surjective automaton.

Table 4 illustrates that in every left Welch set, each state has a different right Welch set.

Figure 7 depicts 2 diagonal sequences to exemplify the last case.

6 Concluding Remarks

This manuscript has characterized some unconventional reversible and surjective behaviors

based on the properties of Welch sets in one-dimensional reversible cellular automata. These

results are relevant for obtaining a better understanding about the dynamical behavior of

these systems, the conclusions of this paper can be applied for instance to generate a desired
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Figure 7: States in the gray cells at the same coordinates are different for each fixed diagonal
sequence.

construction during the evolution of the automaton.

The properties exposed in this work can be extended for reversible automata with a neigh-

borhood size greater than 2 according to the simulation explained in Section 3, where the

unconventional invertible behavior could be constructed taking blocks of ms − 1 states.

A further work is connecting the combinatorial point of view applied in this document with

the algebraic one used by other references in order to achieve a set of deeper properties

implemented not only for analyzing reversible automata but applied as well in other topics

of symbolic dynamics and graph theory.
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