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Abstract

Using Rule 126 elementary cellular automaton (ECA) we will
demonstrate that a chaotic discrete system — when enriched
with memory – exhibits complex dynamics. To quantify
complexity of Rule 126 ECA with memory we study what
types dynamics constructed in Rule 126’s evolution emerge
since mean field theory, basins and de Bruijn diagrams. Later
we will display its complex dynamics emerging selecting a
kind of memory for analyse interactions between gliders and
stationary patterns implementing specific functions.
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Objective and goal

In this talk we will display a simple tool to extract complex
systems from a family of chaotic discrete dynamical system.
We will employ a technique — memory based rule analysis
of using past history of a system to construct its present
state and to predict its future.

chaotic 
CA

complex 
CA

transformed to
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Cellular automata

Cellular automata (CA) are discrete dynamical systems
evolving on an infinite regular lattice.

Definition
A CA is a 4-tuple A =< Σ, u, ϕ, c0 > evolving in
d-dimensional latice, where d ∈ Z+. Such that:

I Σ represents the alphabet

I u the local connection, where,
u = {x0,1,...,n−1:d |x ∈ Σ}, therefore, u is a neigborhood

I ϕ the local function, such that, ϕ : Σu → Σ

I c0 the initial condition, such that, c0 ∈ ΣZ

Also, the local function induces a global transition between
configurations:

Φϕ : ΣZ → ΣZ .
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Dynamics in one dimension

central cell

neigborhood

left neighbor right neighbor

t

t+1

t+n

boundary limit define a ring

evolution space Elemental CA (ECA) is defined as follow:

• Σ = {0, 1}
• u = {x1, x0, x−1} such that x ∈ Σ

• the local function ϕ : Σ3 → Σ

• c0 the initial condition is the first ring with t = 0
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Wolfram’s classification

Wolfram defines his classification in simple rules
[Wolfram86], known as ECA. Also, this classification is
extended to n-dimension.

Classes

I A CA is class I, if there is a stable state xi ∈ Σ, such
that all finite configurations evolve to the homogeneous
configuration.

I A CA is class II, if there is a stable state xi ∈ Σ, such
that any finite configuration become periodic.

I A CA is class III, if there is a stable state, such that for
some pair of finite configurations ci and cj with the
stable state, is decidable if ci evolve to cj , such that any
configuration become chaotic.

I Class IV includes all CA also called complex CA.
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Wolfram’s classes

Rule 32 Rule 15

Rule 90 Rule 110

Figure: Behavior classes in ECA: uniform, periodic, chaotic and
complex respectively.
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The case of study: ECA Rule 126

ϕR126 =
{

1 if 110, 101, 100, 011, 010, 001
0 if 111, 000

Figure: Chaotic ECA evolution rule 126. Initial density start with
a 66% on a ring of 356 cells to 187 generations.
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Mean field analysis
Mean field theory is a proven technique for discovering statistical
properties of CA without analyzing evolution spaces of individual rules.
In this way, it was proposed to explain Wolfram’s classes by probability
theory, resulting in a classification based on mean field theory curve:

I class I: monotonic, entirely on one side of diagonal;

I class II: horizontal tangency, never reaches diagonal;

I class IV: horizontal plus diagonal tangency, no crossing;

I class III: no tangencies, curve crosses diagonal.

Thus for one dimension we have:

pt+1 =
k2r+1−1X

j=0

ϕj(X )pv
t (1− pt)

n−v (1)

such that j is a number of relations from their neighborhoods and X the

combination of cells xi−r , . . . , xi , . . . , xi+r . n represents the number of

cells in neighborhood, v indicates how often state one occurs in Moore’s

neighborhood, n − v shows how often state zero occurs in the

neighborhood, pt is a probability of cell being in state one, qt is a

probability of cell being in state zero (therefore q = 1− p).
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Mean field polynomial for ϕR126
Mean field curve confirms that probability of state ‘1’ in space-time
configurations of ECA Rule 126 is 0.75 this probability of high densities of 1’s
with its maximum point in 0.5.
Rule 126 is chaotic because the curve cross the identity. The first unstable
fixed point at the origin f = 0 show that given very small number of cells, all
they in state ’1’ will spread quickly on the lattice. The stable fixed point is
f = 0.6683, which represent ‘concentration’ of ‘1’s that diminish during
automaton development. Such stable fixed point hints on existence of
non-trivial periodic structures emerging on ECA Rule 126, as was confirmed
using filters.

p

q

ϕR126

pt+1 = 3ptqt
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Attractors analysis
Generally a basin could classifier CA with chaotic or complex
behavior following also previous results on attractors
[Wuensche92].

I class I: very short transients, mainly point attractors
(but possibly also point attractors) (very ordered
dynamics) very high in-degree, very high leaf density
(ordered dynamics);

I class II: very short transients, mainly short periodic
attractors (but also point attractors), high in-degree,
very high leaf density;

I class IV: moderate transients, moderate length periodic
attractors moderate in-degree, moderate very leaf
density (possibly complex dynamics);

I class III: very long transients, very long periodic
attractors low in-degree, low leaf density (chaotic
dynamics).
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Basins in ϕR126 with DDLab

Figure: 16 non-equivalent basins in ECA Rule 126 for l = 18..
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ECA with memory

Conventional CA are ahistoric (memoryless): i.e., the new state of a cell
depends on the neighborhood configuration solely at the preceding time
step of ϕ. CA with memory can be considered as an extension of the
standard framework of CA where every cell xi is allowed to remember
some period of its previous evolution.
Thus to implement a memory we design a memory function φ, as follow:

φ(x t−τ
i , . . . , x t−1

i , x t
i )→ si (2)

such that τ < t determines the degree of memory backwards and each
cell si ∈ Σ being a state function of the series of states of the cell xi

with memory up to time-step. Finally to execute the evolution we apply
the original rule as follows:

ϕ(. . . , s t
i−1, s

t
i , s

t
i+1, . . .)→ x t+1

i .

Thus in CA with memory, while the mapping ϕ remains unaltered,

historic memory of all past iterations is retained by featuring each cell

as a summary of its past states from φ. Therefore cells canalize memory

to the map ϕ.
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ECA with memory

Firstly we should consider a kind of memory, in this case the
majority memory φmaj and then a value for τ . This value
represent the number of cells backward to consider in the
memory. Therefore a way to represent functions with
memory and one ECA associated is proposed as follow:

φCAm:τ (3)

such that CA represents the decimal notation of an specific
ECA and m a kind of memory given. This way the majority
memory working in ECA rule 126 checking tree cells on its
history is denoted simply as φR126maj :3.
Implementing the majority memory φmaj we can select some
ECA and experimentally look what is the effect.
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ECA with memory

classic ECA (ahistorical) ECA with memory

φm:τ

t− τ

...

{si}

t

ϕ

t

ϕ

...

t− 1

t + 1

t + 1

Figure: Memory working on ECA (preserving discrete domain).
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Complex dynamics emerging in φR126maj

τ = 3 τ = 4 τ = 5

τ = 6 τ = 7 τ = 8 τ = 9

τ = 10 τ = 11 τ = 12 τ = 13

original

Figure: ECA Rule 126 with majority memory φR126maj :τ since 13 values of τ
are tested. All they were calculated on a ring of 246 cells for 236 generations
also filtered.
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Complex dynamics emerging in φR126maj :4

Figure: A new complex ECA with majority memory φR126maj :4.
Evolving on a ring of 246 cells for 236 generations also filtered.
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Complex dynamics emerging in φR126maj :4

s1 s2

g2g1

structure vg lineal volume mass

s1 0/2 = 0 1 1

s2 0/10 = 0 12 28

g1 3/5 ≈ 0.6 8 17

g2 −3/5 ≈ −0.6 8 17

gun1 0/19 = 0 6 -

gun2 0/27 = 0 6 -

gun3 0/110 = 0 10 -

gun4 0/84 = 0 15 -

Figure: Basic gliders in φR126maj :4. Two stationary configurations
s1 and s2 respectively, and two gliders g1 and g2..
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Self-organization by structure formation
Coding glider positions to get a reaction desired hence we can think
about of solutions of some related problems on complexity behavior.
One of them is precisely the problem of self-organization (by
structures). In this way, we present how each basic glider can be
produced in collisions between other different gliders.

(a) (b) (c) (e)(d) (f)

Figure: Generating of basic localizations since collisions between
other localizations. The following reactions are illustrated, as
follow: (a) g1 + g2 = s1, (b) s1 + g2 = g1, (c) g1 + s1 = g2, (d)
s2 + g2 = g1, (e) g2 + s1 = g2, and (f) g1 + g2 = s2.
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Self-organization by structure formation

Figure: Generating gliders guns by multiple colliding gliders.
Unlimited grown in φR126maj :4.
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Coding gliders by basin representation
Basically we will represent the s1 gliders because this evolve in both
ECA ϕR126 and φR126maj :4.

l=6 l=10

l=11

l=4

l=12

Figure: Generating gliders guns by multiple colliding gliders.
Unlimited grown in φR126maj :4.
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Coding gliders by basin representation
Basins display attractors for l = 4, 6, 10, 11 and 12 respectively,
where a glider s1 evolve on each string. Basically we have that:

I for l = 4 the string w = 1110 produce s1 gliders without
intervals (second basin).

I for l = 6 the string w = 111100 produce the same s1 gliders
(second basin).

I for l = 10 the strings w = 1110111101 and w = 0011100111
produce two s1 gliders and with two spaces between each
glider (fifth basin). Also the strings w = 1110111101 and
w = 0011100111 produce a s1 glider with one space (fourth
basin).

I for l = 11 the strings w = 11100111101 and
w = 00111100111 produce a s1 glider but with three spaces
between them (third basin).

I for l = 12 the strings w = 001111001111 produce s1 gliders
without space (fourth basin), and the string
w = 111011101110 produce the same s1 glider (seventh
basin).
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Coding gliders since de Bruijn diagrams
Basically we will represent the s1 gliders because this evolve in both
ECA ϕR126 and φR126maj :4.

Figure: Cycles in the de Bruijn diagram and the corresponding
periodic evolution for cycle (0, 4).
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Coding gliders since de Bruijn diagrams

I w1 = 1000 - produce s1 glider

I w2 = 10000 - produce s1 glider with one interval

I w3 = 000011 - filter

I w4 = 011000 - filter

I w5 = 010001100 - produce 3s1 gliders with one interval

I w6 = 0010001100 - produce 2s1 gliders with two intervals

I w7 = 0001000011 - produce 2s1 gliders with two intervals

I w8 = 10000110000 - produce s1 glider with three intervals

I w9 = 00001000011 - produce s1 glider with three intervals

Thus we can construct any initial condition controlling s1 gliders and

intervals between them. For example, the expression ((w3w7)∗ + w9)

will code two spaces of b1 with two s1 gliders together finishing always

with one s1 glider. This way we can control and code easily gliders to

solve problems based-collisions.
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Summary of reactions in φR126maj :4
Summary of collisions in φR126

binary multiple soliton guns

s1 ← g2 = s1 s2 ← g2 = 2g1 g1 → s1 = s1 + g1 s1 ← 2g2 = gun1

g1 → s1 = s1 g1 → s2 = 2g2 s1 ← g2 = g2 + s1 gun2 ← g2 = gun1

s1 ← g2 = g1 s2 ← 2g2 = 2g1 2g1 → s2 = s2 + 2g1 g1 ↔ g2 ← 2g2 = gun2

g1 → s1 = g2 2g1 → s2 = 2g2 s2 ← 2g2 = 2g2 + s2 g1 ↔ g2 = gun3

s2 ← g2 = g1 s2 ← 2g2 = 2g1 + g2 2g1 → 2s2 = 2g1 + 2s2 2g1 ↔ 2g2 = gun2
∗

g1 → s2 = g2 2g1 → s2 = g1 + 2g2 2s2 ← 2g2 = 2g2 + 2s2 3g1 ↔ 3g2 = gun1
∗

g1 ↔ g2 = ∅ 2g1 ↔ 2g2 = ∅ 2g1 ↔ 2g2 = 2g2 + 2g1 (∗ means gun composed)

g1 ↔ g2 = s1 2g1 ↔ 2g2 = g1

g1 ↔ g2 = s2 2g1 ↔ 2g2 = g2

g1 ↔ g2 = g1 2g1 ↔ 2g2 = 2g1

g1 ↔ g2 = g2 2g1 ↔ 2g2 = 2g2

g1 ↔ g2 = 2g1 g1 ↔ 2g2 = g1

g1 ↔ g2 = 2g2 2g1 ↔ g2 = g2

g1 ↔ g2 = g2 + 2g1 g1 ↔ 2g2 = g2

g1 ↔ g2 = g1 + 2g2 2g1 ↔ g2 = g1

g1 ↔ 2g2 = ∅
2g1 ↔ g2 = ∅
g1 ↔ 2g2 = 2g2 + g1

2g1 ↔ g2 = g2 + 2g1

g1 ↔ 2g2 = 2g2 + 2g1

g1 ↔ 2g2 = 2g2 + g2 + 2g1

2g1 ↔ g2 = 2g2 + 2g1

2g1 ↔ g2 = 2g2 + 2g1 + g1

3g1 ↔ 3g2 = 2g1

g1 → s1 ← g2 = ∅
g1 → s1 ← g2 = s1

g1 → 2s2 ← g2 = g1 + g2

g1 → 2s2 ← g2 = g2 + g1

2g1 → s1 ← 2g2 = 2g2 + 2s2 + 2g1

3g1 ↔ 3g2 = g2 + 2g2 + 2g1

4g1 ↔ g2 = 2g1 + g1

g1 ↔ 4g2 = g2 + 2g2

Figure: Table of binary, multiple and other collisions.
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Implementing basic functions
Given an ample number of reactions in φR126maj :4 the rule
could be useful in implementing collision-based computing
schemes. This figure illustrates the interaction of gliders
traveling, colliding one with another and implementing a
Boolean conjunction in the result of collision. Initially since
previous collisions we can embed logical constructions of
and and not gates.

¬a ∧ b a ∧ ¬b
a ∧ b

a b

Figure: Colliding interactions deriving in logic gates.
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Implementing basic functions

Considering than a glider g1 represents value 0, two g1

gliders together represent a value 1. Two gliders 2g2

traveling in positive direction will represent the operator and
one the register. Thus the register will reads false or true
if them become be produced successfully.

FALSE TRUE

2g22g1

g1

2g22g1

2g1

REGISTER

2g2

2g1

2g1

g1

g1

Figure: Colliding interactions deriving in logic gates.
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Implementing basic functions

The basic reactions required to produce a primitive
computational scheme in φR126maj :4. The following set of
relations is used (see table reactions):

2g1 ↔ 2g2 = ε g1 ↔ 2g2 = g1 g1 ↔ 2g2 = 2g2 + g1

2g1 ↔ 2g2 = g1 2g1 ↔ 2g2 = 2g2 + 2g1

so we can represent serial reactions as:

2g1 + 2g2 = ε empty word
2g1 + 2g2 = g1 false
2g1 + 2g2 = 2g1 true.

A not gate can be represented as:

I false + 2g2 = true + 2g2, and

I true + 2g2 = false + 2g2.
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Figure: Constructing the formal languages Σ0 (top), Σ1 (middle),
and Σ2 (bottom) by glider reactions in φmajR126:4.
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Final remarks

1. We have demonstrated that memory in ECA offers a
new approach to discover complex dynamics based on
particles and non-trivial reactions across them.

2. We have enriched some chaotic ECA rules with majority
memory and demonstrated that by applying certain
filtering procedures we can extract rich dynamics of
travelling localizations, or particles.

3. Complex ECA with memory display promising
applications to solve a diversity of problems.

4. Finally, the memory φ can be applied to any CA or
dynamical system.
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Figure: A new class of ECA with memory arising since classic ECA.
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Figure: Inheritance by cluster classification [Wuensche92] but now
with memory.
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Thank you!
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