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Abstract

We show the existence of a regular particle-based language
in an elemental complex cellular automaton. We apply de
Bruijn diagrams and tiles theory to determine the formal
language and a full description of the evolution space
characterized by triangles respectively. Particularity, we
research Rule 110. Consequently, we propose a novel way to
code initial conditions in Rule 110 and solving some
interesting problems as: self-organization and the
reproduction of a cyclic tag system. Finally, we discuss some
others results and open problems in Rule 110.
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Stages of most popular contributions

John von Neumann (December 28, 1903 - February 8, 1957)
Precursor of cellular automata, universal
constructor, self-reproduction,
universality

John Horton Conway (December 26, 1937 - ?)
The Game of Life, system of gliders,

spatial universality

Stephen Wolfram (August 29, 1959 - ?)
One-dimensional CA, classes,
complexity, languages

Matthew Cook (February 7, 1970 - ?)
Minimum universality in CA,

Rule 110, cyclic tag systems
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Cellular automata

Cellular automata are discrete dynamical systems evolving
into an infinite regular lattice.

Definition
A cellular automaton CA is a 4-tuple A =< Σ, u, ϕ, c0 >
evolving in d-dimension, where d ∈ Z+. Such that:

I Σ represents the alphabet

I u the local connection, where,
u = {x0,1,...,n−1:d |x ∈ Σ}, therefore, u is a neigborhood

I ϕ the local function, such that, ϕ : Σu → Σ

I c0 the initial condition, such that, c0 ∈ ΣZ

Also, the local function induces a global transition between
configurations:

Φϕ : ΣZ → ΣZ .
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Dynamics in one dimension
central cell

neigborhood

left neighbor right neighbor

t

t+1

t+n
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Wolfram’s classes
Karel Culik II defines these classes in the next way:

Classes

I A CA is class I, if there is a stable state xi ∈ Σ, such that all finite
configurations evolve to the homogeneous configuration.

I A CA is class II, if there is a stable state xi ∈ Σ, such that any
finite configuration become periodic.

I A CA is class III, if there is a stable state, such that for some pair
of finite configurations ci and cj with the stable state, is decidable
if ci evolve to cj .

I Class IV includes all CA.

Thus, Class I ⊂ Class II ⊂ Class III ⊂ Class IV. Finally,
Culik establishes that it is undecidable to determine the class of every
CA. In particular, the Elemental Cellular Automata (ECA) named for
Wolfram are all CA of order (k = 2, r = 1). Where |Σ| = k and
u = 2r + 1.

Karel Culik II and Sheng Yu

Undecidability of CA Classification Schemes

Complex Systems 2:177-190, 1988.
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Wolfram’s classes

Rule 0 Rule 15

Rule 30 Rule 54

Figure: Wolfram’s classes in elemental cellular automata. Initial
random density of 0.5, to 414 cells in 238 times.
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History in Rule 110

The one-dimensional binary cellular automaton numbered Rule 110 in
Stephen Wolfram’s system of identification has been an object of special
attention due to the structures or gliders which have been observed in
evolution samples from random initial conditions. It has even been
suggested that Rule 110 belongs to the exceptional class IV of automata
whose chaotic aspects are mixed with regular behaviors; but in this case
the background where the chaotic behavior occurs is textured rather
than quiescent, a tacit assumption in the original classification.
Whatever the merits of this classification, Rule 110 was awarded its own
appendix (Table 15, see book below). It contains specimens of
evolution including a list of thirteen gliders compiled by Doug Lind.
Also, Wolfram presents the conjecture that the rule could be universal.

Stephen Wolfram

Theory and Aplications of Cellular Automata

World Scientific Press, Singapore, 1986.

Wentian Li and Mats G. Nordahl

Transient behavior of cellular automaton rule 110

Physics Letters A 166:335-339, 1992.
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History in Rule 110
In November 1998 at the Santa Fe Institute Matthew Cook demonstrates that
Rule 110 is Universal! Simulating a novel cyclic tag system.

Matthew Cook
Introduction to the activity of rule 110 (copyright 1994-1998 Matthew
Cook)
http://w3.datanet.hu/˜cook/Workshop/CellAut/Elementary/Rule110/
110pics.html, January 1999.

Harold V. McIntosh
Rule 110 as it relates to the presence of gliders
http://delta.cs.cinvestav.mx/˜mcintosh/oldweb/pautomata.html,
January 1999.

Stephen Wolfram
A New Kind of Science
Wolfram Media, Inc., Champaign, Illinois, 2002.

Harold V. McIntosh
Rule 110 Is Universal!
http://delta.cs.cinvestav.mx/˜mcintosh/oldweb/pautomata.html, June
30, 2002.

Matthew Cook
Universality in Elementary Cellular Automata
Complex Systems 15/1:1-40, 2004.
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Rule 110
Rule 110 is an elemental cellular automaton. The local function
determining the behavior is:

ϕ(0, 0, 0) → 0 ϕ(1, 0, 0) → 0
ϕ(0, 0, 1) → 1 ϕ(1, 0, 1) → 1
ϕ(0, 1, 0) → 1 ϕ(1, 1, 0) → 1
ϕ(0, 1, 1) → 1 ϕ(1, 1, 1) → 0

Table: Evolution rule 110 – (01101110)2.

Figure: Random evolution in Rule 110. Initial density of 0.5, to 474
cells in 182 times.
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System of particles
Rule 110 have a complicated system of gliders. The figure show single,
package and extensible gliders. Including the extensible glider gun!

gun gun
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System of particles

margins
structure left - right vg width cap

ems oms ems oms

er . 1 . 1 2/3 ≈ 0.666666 14 T
el 1 . 1 . -1/2 = -0.5 14 T
A . 1 . 1 2/3 ≈ 0.666666 6 T
B 1 . 1 . -2/4 = -0.5 8 P

B̄n 3 . 3 . -6/12 = -0.5 22 T

B̂n 3 . 3 . -6/12 = -0.5 39 T
C1 1 1 1 1 0/7 = 0 9-23 P
C2 1 1 1 1 0/7 = 0 17 P
C3 1 1 1 1 0/7 = 0 11 P
D1 1 2 1 2 2/10 = 0.2 11-25 P
D2 1 2 1 2 2/10 = 0.2 19 P
En 3 1 3 1 -4/15 ≈ -0.266666 19 P

Ē 6 2 6 2 -8/30 ≈ -0.266666 21 P
F 6 4 6 4 -4/36 ≈ -0.111111 15-29 P
Gn 9 2 9 2 -14/42 ≈ -0.333333 24-38 P
H 17 8 17 8 -18/92 ≈ -0.195652 39-53 P

glider gun 15 5 15 5 -20/77 ≈ -0.259740 27-55 P

Table: Properties of each glider in Rule 110.
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Formal languages
The formal languages theory provides a way to study sets of chains from
a finite alphabet. The languages can be seen as inputs for some classes
of machines or as the final result from a typesetter substitution system
i.e., a generative grammar into the Chomsky’s classification.

language structure

recursively enumerated Turing machine

context sensitive linear bounded automata

context free pushdown automata

regular finite automata

Lyman P. Hurd

Formal Language Characterizations of Cellular Automaton Limit Sets

Complex Systems 1:69-80, 1987.

Stephen Wolfram

Computation Theory on Cellular Automata

Communication in Mathematical Physics 96:15-57, November 1984.

John E. Hopcroft and Jeffrey D. Ullman

Introduction to Automata Theory Languajes, and Computation

Addison-Wesley Publishing Company, 1987.
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Formal languages
The basic model necessary for the languages of these machines (and for
all computation), is the Turing machine. The machines recognizing each
family of languages are described as a Turing machine with restrictions.
In general, a sequential machine is a finite automata and in particular a
regular language can be recognized by a finite automaton, a device with
a finite number of internal states and with state transitions labeled by
symbols from a finite alphabet. Thus, the sets of regular expressions on
an alphabet are defined recursively as:

1. φ is the regular expression representing the empty set.

2. ε is the regular expression describing the set {ε}.
3. For each symbol x ∈ Σ, x is a regular expression depicting the set

{x}.
4. If x and y are regular expressions representing languages Σi and

Σj respectively, then (x + y), (xy), and (x∗) are regular
expressions representing Σi ∪ Σj , ΣiΣj and Σ∗

i respectively.

When it is necessary to distinguish between a regular expression x and
the language determined by x , we shall use Lx .

Mats G. Nordahl

Formal languages and finite cellular automata

Complex Systems 3:63-78, 1989.
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Finite state machine
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Figure: The first machine can read any word of language L+
R110 but only

accepts ether configurations. The second machine only reads and
accepts ether and A gliders. Nevertheless, the limitation is that both
machines only can identify a phase for every particle.
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The de Bruijn diagram

For an one-dimensional cellular automaton of order (k, r), the de Bruijn
diagram is defined as a directed graph with k2r vertices and k2r+1

edges. The vertices are labeled with the elements of the alphabet of
length 2r . An edge is directed from vertex i to vertex j , if and only if,
the 2r − 1 final symbols of i are the same that the 2r − 1 initial ones in
j forming a neighborhood of 2r + 1 states represented by i � j . In this
case, the edge connecting i to j is labeled with ϕ(i � j).
The connection matrix M corresponding with the de Bruijn diagram is
as follows:

Mi,j =


1 if j = ki , ki + 1, . . . , ki + k − 1 (mod k2r )
0 in other case

(1)

Harold V. McIntosh

Linear cellular automata via de Bruijn diagrams

http://delta.cs.cinvestav.mx/˜mcintosh/oldweb/pautomata.html, 1991.

Burton H. Voorhees

Computational analysis of one-dimensional cellular automata

World Scientific Series on Nonlinear Science, Series A, Vol. 15, 1996.
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The de Bruijn diagram
Paths in the de Bruijn diagram may represent chains,
configurations or classes of configurations in the evolution space.

1

0 3

201

00 11

10

000

010

011

001

100

101

110

111
0

1

1

1

0 1

1

0
0 = 1 =

Figure: de Bruijn diagram for Rule 110.

Now we must discuss another variant where the de Bruijn diagram

can be extended to determine greater sequences by the period and

the shift of their cells in the evolution space in Rule 110. A

problem is that the calculation of extended de Bruijn diagrams

grows exponentially with order k2rn ∀ n ∈ Z+.



Cellular Automata

Genaro

Rule 110

Antecedents

Dynamic in Rule 110

Regular language
particles-based

Applying the regular
language

More contributions in
Rule 110

Discussion

Acknowledgements

The End

The de Bruijn diagram
The extended de Bruijn diagrams2 calculate all the periodic sequences
by the cycles defined in the diagram. These ones also calculate the shift
of a periodic sequence for a certain number of steps; thus we can get de
Bruijn diagrams describing all the periodic sequences characterizing a
glider in Rule 110.

Figure: de Bruijn diagram calculating A glider and ether.

2The de Bruijn diagrams were calculated with the NXLCAU21 system
developed by McIntosh for NextStep operating system (OpenStep and
LCAU21 to MsDos). Application and code source are available from:
http://delta.cs.cinvestav.mx/~mcintosh/oldweb/software.html
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The de Bruijn diagram
In the figure we have two cycles: a cycle formed by vertex 0 and a large
cycle of 26 vertices which is composed as well by 9 internal cycles. The
evolution of the right illustrates the location of the different periodic
sequences producing the A glider in distinct numbers.
Following the paths through the edges we obtain the sequences or
regular expressions determining the phases of the A glider. For example,
we have cycles formed by:

I. The expression (1110)*, vertices 29, 59, 55, 46 determining An gliders.

II. The expression (111110)*, vertices 61, 59, 55, 47, 31, 62 defining nA
gliders with a T3 tile between each glider.

III. The expression (11111000100110)*, vertices 13, 27, 55, 47, 31, 62, 60,
56, 49, 34, 4, 9, 19, 38 describing ether configurations in a phase (in the
following subsection we will see that it corresponds to the phase
e(f1 1)).

The cycle with period 1 represented by vertex 0 produces a homogenous

evolution with state 0. The evolution of the right shows different

packages of A gliders, the initial condition is constructed following some

of the seven possible cycles of the de Bruijn diagram or several of them.

We can select the number of A gliders or the number of intermediate

tiles T3 changing from one cycle to another.
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The de Bruijn diagram

-10 +10

0

Figure: Patterns calculated by de Bruijn diagrams up to 10
generations. Calculating A, B, C and D gliders, tiles and several
periodic meshes.
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Tiles
A plane of tiles T is a countable family of closed sets T = {T0, T1, . . .}
covering the plane without intervals or intersections. Defined as a join
of sets (called a mosaic T ):

T =
n[

i=0

Ti ∀ n ∈ Z+
0 (2)

The “plane” is the Euclidian plane Z× Z in elementary geometry. Rule
110 covers the evolution space through different sets of triangles Tn ∀
n ∈ Z+

0 , where n represent the size of the triangle counting the cells in
some of its internal sides.

T� T� T
�

� T
�
� T

�

� T
�
� T

�

� T
�
� T

�

� T
�
�

Branko Grünbaum and G. C. Shephard

Tilings and Patterns

W. H. Freeman and Company, New York, 1987.
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Phases fi i

tile T β
3

representing phases

generic de Bruijn
diagram to ether

where 1 ≤ i ≤ 4

Figure: Determining phases in Rule 110.
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Phases fi i

The phases represent the periodic sequences (regular expressions of
each glider) of finite length in the de Bruijn diagram. It is important to
indicate that an alignment of a phase determines a set of regular
expressions and another alignment defines another set of them.
Cook determines two measures in the evolution space: horizontal _i

and vertical ↗i . We only determine the horizontal case fi 1. Phases fi 1
have four sub-levels consequence of the phases in T3 tile and each phase
can be aligned i times generating all the possible phases (right part).

phases level one (F1) → {f1 1, f2 1, f3 1, f4 1}
phases level two (F2) → {f1 2, f2 2, f3 2, f4 2}

phases level three (F3) → {f1 3, f2 3, f3 3, f4 3}
phases level four (F4) → {f1 4, f2 4, f3 4, f4 4}

Table: Four sets of phases Fi in Rule 110.

Variable fi indicates the phase currently used where the second

subscript i (forming notation fi i) indicates that selected set Fi of

regular expressions.
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Phases fi i

Finally, our notation codifies initial conditions by phases is in
the following way:

#1(#2, fi 1) (3)

where #1 represents the glider according to Cook’s
classification and #2 the phase of the glider if it has a
period greater than four. We must indicate that the
arrangement by capital letters for the #2 parameter into the
OSXLCAU21 system3 does not have a particular meaning; it
is only used to give a representation at the different levels for
phases with gliders of periods module four.

3The OSXLCAU21 system have implemented a special panel for
code initial conditions with all possible phases to each glider. The
application and source are available from: http://uncomp.uwe.ac.uk/

genaro/OSXCASystems.html. Also you can see a practical introduction
explaining our system in http://uncomp.uwe.ac.uk/genaro/papers/

OSXLCAU21/OSXLCAU21.html
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Phases fi i

Now we determine the phases fi 1 for A and B gliders as the
figure illustrates. T3 tiles determine a phase #1; in the case
of A and B gliders only a T3 tile is necessary to describe
their structure. In all the others cases, at least two T3 tiles
are needed.

f� �

f� �

f� �

f� �

f� �

f� �

f� �

Figure: Phases fi 1 for A and B gliders respectively.
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Phases fi i
Following each phase initiated by every T3 tile, the phases fi 1 for the A
glider are as follows:

I A(f1 1) = 111110

I A(f2 1) = 11111000111000100110

I A(f3 1) = 11111000100110100110

In general for every structure with negative speed, the phase f4 1 =
f1 1, for this reason the phase is not written. Each periodic sequences
defined by T3 tiles conserves the regular expression property when basic
rules are applied. Therefore, ε, A(f1 1), A(f1 1)+A(f1 1),
A(f1 1)-A(f1 1), A(f1 1)* and A(f3 1)-A(f1 1)-A(f2 1)-A(f3 1)-A(f2 1)
are regular expressions (we use ‘-’ to represent the concatenation
operation in our constructions). Let us remember the codification in
phases, A indicates the glider (#1) and fi 1 indicates the phase. Also,
all phases fi 1 for the B glider are:

I B(f1 1) = 11111010

I B(f2 1) = 11111000

I B(f3 1) = 1111100010011000100110

I B(f4 1) = 11100110
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Phases fi i

The complete subset of regular expressions ΨR110 for each
glider in Rule 110 (see Appendix of our paper), serves as
input data for the OSXLCAU21 system. So, is available from
a digital file in:

http://uncomp.uwe.ac.uk/genaro/rule110/listPhasesR110.txt

Genaro Juárez Mart́ınez, Harold V. McIntosh, Juan C. Seck Tuoh Mora
and Sergio V. Chapa Vergara
Determining a regular language by glider-based structures called phases
fi 1 in Rule 110
by publish in Journal of Cellular Automata, special issue dedicated to
Harold V. McIntosh, 2007.
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Subset diagram
How to validate our regular language LR110 based in particles?

Figure: Subset diagram in Rule 110. Any sequence of ΨR110 must
follow a way into of the subset diagram begin from the biggest state.
Other relevant properties is that besides the diagram determines Garden
of Eden configurations, two minimal sequences are: (101010)* and
(01010)*.

Harold V. McIntosh

One Dimensional Cellular Automata

by publish, 2007
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Self-organization and synthesis of particles

We have demonstrated that all gliders can be produced by a
collision from others gliders.
Our second paper, show a full description of several collisions to
each glider synthesis of gliders in Rule 110, some of them with
natural gliders. Too, some very complicated and rare extensible
gliders.

http://uncomp.uwe.ac.uk/genaro/rule110/glidersRule110.html

Genaro Juárez Mart́ınez, Harold V. McIntosh and Juan C. Seck Tuoh
Mora

Production of gliders by collisions in Rule 110

Lecture Notes in Computer Science 2801:175-182, 2003

Genaro Juárez Mart́ınez, Harold V. McIntosh and Juan C. Seck Tuoh
Mora

Gliders in Rule 110

International Journal of Unconventional Computing, 2/1:1-49, January
2006.
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Reproducing the function of cyclic tag system

As an advance of our present work, we show the cyclic tag system inside
the evolution space of Rule 110. This incredible result is reconstructed
using our regular language for Rule 110. You can find some differences
from A New Kind of Science, because it has mistakes that do not allow
a good reconstruction. The mistakes were clarified by Cook in
November 2002 (personal communication).

http://uncomp.uwe.ac.uk/genaro/rule110/ctsRule110.html

Writing the sequence 1110111 on the tape of the cyclic tag system and
a leader component at the end with two solitons. Our reconstruction is
developed over an evolution space of 56,240 cells in 57,400 generations,
i.e., a space of 3,228,176,000 cells with a computer Pentium II to 233
mhz, operating system OpenStep and 256MB of RAM, February 2003.
Collaborations of Harold V. McIntosh and Juan C. Seck Tuoh Mora.

Genaro Juárez Mart́ınez, Harold V. McIntosh, Juan C. Seck Tuoh Mora
and Sergio V. Chapa Vergara

Reproducing the cyclic tag systems developed by Matthew Cook with
Rule 110 using the phases fi 1

preprint available from http://uncomp.uwe.ac.uk/genaro/papers.html
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More contributions in Rule 110

Universality

Turlough Neary and Damien Woods
P-completeness of cellular automaton Rule 110
Lecture Notes in Computer Science 4051:132-143, July 2006.

Mirko Rahn
Universalität in Regel 110
http://www.stud.uni-karlsruhe.de/˜uyp0/uni110.foil.ps.gz, 18 März,
2003.

Universality and cyclic tag systems

Kenichi Morita
Simplifying Universal One-Dimensional Reversible Cellular Automaton
Infinite Configurations
Conference at the Automata 2006, Hiroshima University, 2006.

Kenichi Morita
Simple Universal One-Dimensional Reversible Cellular Automata
Journal of Cellular Automata, by publish, 2007.
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More contributions in Rule 110

Gliders and tiles

Harold V. McIntosh
A Concordance for Rule 110
http://delta.cs.cinvestav.mx/˜mcintosh/oldweb/pautomata.html, 2000.

Genaro Juárez Mart́ınez and Harold V. McIntosh
ATLAS: Collisions of gliders like phases of ether in Rule 110
http://uncomp.uwe.ac.uk/genaro/papers.html, August 2001.

Genaro Juárez Mart́ınez
Introduction to Rule 110
Conference at the Rule 110 Winter Workshop, Bielefeld, Germany, March
2004. (available from http://uncomp.uwe.ac.uk/genaro/papers.html)
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4
4A full list of references, advances and related topics in Rule 110 is

available from http://uncomp.uwe.ac.uk/genaro/rule110.html
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Final commentaries
Several questions arise because it seems that the evolution of
Rule 110 language should always be regular. For instance:

I How a regular language can be able of constructing a
universal machine?

I Could Rule 110 determine new grammars?

I Could we project this language to two-dimensional
finite-state automata?

I Could Rule 110 be able of implementing unconventional
logic operations by glider-based reactions?

I Could Rule 110 support a Turing machine, universal
constructor and self-reproduction? Also, with a system
of gliders.

Well, it is only the beginning!
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Figure: Glider gun by collision among particles with OSXLCAU21 system.
The regular expression is: e+-D1(C,f3 1)-e-C1(A,f1 1)-e-Ē(B,f1 1)-e+.
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