
Instituto Politécnico Nacional
Escuela Superior de Cómputo

TT 2017-B077

Simulator of Logical Operations
from a cellular automaton with
chaotic behavior to its complex

projection

Thesis

To obtain the grade of:
Computer Systems Engineer

Presented by:
Moreno González Gabriela

Director:

Dr. Genaro Juárez Mart́ınez

Mexico City
November 2018





3

Acknowledgements:

“To my parents

Maŕıa Claudia González Salinas and Isaac Moreno Avilés,

because both showed me the world in their own way and allow me to see it now to

mine.”

“To my sisters

Mónica Moreno González and Diana Patricia Moreno González,

because when I needed a friend they were always there.”

“For the best teacher in the world

Genaro Juárez Mart́ınez,

for teaching me to love research, and that I can always give more.”

“To my friends,

Jesus, Marco and Ulises

for teaching me that there are people for whom it is worth giving everything.”

“We can only see little of the future, but enough to realize that there is a lot to do.”

Alan Turing

Gabriela Moreno González



Índice general

1. Introduction 21

2. Fundamental Concepts 23

2.1. Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1. Definition of a Dynamic System . . . . . . . . . . . . . . . . . 23

2.1.2. Classification of Systems . . . . . . . . . . . . . . . . . . . . . 24

2.1.3. Description of the behavior of the Systems . . . . . . . . . . . 24

2.1.4. Quantitative analysis of a Dynamic System . . . . . . . . . . . 27

2.2. Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2. Elements that make up a CA . . . . . . . . . . . . . . . . . . 29

2.2.3. Extension of the CA: functions with memory . . . . . . . . . . 30

2.3. Elementary Cellular Automata . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.4. Wolfram Classification . . . . . . . . . . . . . . . . . . . . . . 37

2.4. Tools used in the analysis of the ECA . . . . . . . . . . . . . . . . . . 37

2.4.1. Lyapunov Exponent for ECA . . . . . . . . . . . . . . . . . . 40

2.4.2. Wuensche Classification . . . . . . . . . . . . . . . . . . . . . 41

2.4.3. The De bruijn Diagrams . . . . . . . . . . . . . . . . . . . . . 42

2.5. Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.1. Definition of a chaotic system . . . . . . . . . . . . . . . . . . 44

2.5.2. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4



Índice general 5

2.5.3. Identification of a Chaotic System . . . . . . . . . . . . . . . . 46

2.6. Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.1. Definition of a Complex System . . . . . . . . . . . . . . . . . 46

2.6.2. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.3. Identification of a Complex System . . . . . . . . . . . . . . . 47

3. Rule 126 of ACE 48

3.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Definition of rule 126 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3. Propiedades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4. Classification of rule 126 . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5. The De Bruijn Diagram for rule 126 . . . . . . . . . . . . . . . . . . . 51

3.6. Wuensche classification for rule 126 . . . . . . . . . . . . . . . . . . . 54

4. Rule 126 with memory of 4 generations 57

4.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2. Rule 126 with memory: majority function . . . . . . . . . . . . . . . . 58

4.3. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4. Elements within the evolution space . . . . . . . . . . . . . . . . . . . 61

4.4.1. Tiles for filtering . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2. Gliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.3. Still-life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.4. Gliders-gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5. Points of collision of the elements within the space of evolutions . . . 72

4.5.1. Collision points of the gliders . . . . . . . . . . . . . . . . . . 73

4.5.2. Collision points of the still-life . . . . . . . . . . . . . . . . . . 77

4.6. Collisions between the elements within the evolution space . . . . . . 79

4.6.1. Binary collisions . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.2. Ternary collisions . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.3. Colisiones de orden superior . . . . . . . . . . . . . . . . . . . 142

5. Collision-based computing 144

5.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



Índice general 6

5.2.1. Main characteristics . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3. Determining the computing power of a system . . . . . . . . . . . . . 148

5.3.1. Chomsky Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.2. Logic Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6. Constructions based on collisions 156

6.1. Objects of rule 126 with memory . . . . . . . . . . . . . . . . . . . . 156

6.1.1. Eaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.1.2. Black-holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.1.3. Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2. Computability of the rule . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.1. Regular languages . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.2. Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . 166

6.2.3. Logic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.2.4. Rule computing power . . . . . . . . . . . . . . . . . . . . . . 177

7. SOL: Logical Operations Simulator 181

7.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.1.1. Functional requirements . . . . . . . . . . . . . . . . . . . . . 181

7.1.2. Non functional requirements . . . . . . . . . . . . . . . . . . . 183

7.2. System’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.3. System’s modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.3.1. Elemental Cellular Automatons . . . . . . . . . . . . . . . . . 184

7.3.2. Rule 126 with memory . . . . . . . . . . . . . . . . . . . . . . 187

7.3.3. Logical Operations . . . . . . . . . . . . . . . . . . . . . . . . 190

7.4. Technologies to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.5. System tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.5.1. Elemental Cellular Automatons . . . . . . . . . . . . . . . . . 193

7.5.2. Rule 126 with memory . . . . . . . . . . . . . . . . . . . . . . 199

7.5.3. Logical operations . . . . . . . . . . . . . . . . . . . . . . . . 205



Índice general 7

8. Final results 209

8.1. Celebration of late. Prof. Harold V. McIntosh Achievements 2017 . . 209

8.2. The Ninth International Conference on Complex Systems 2018 . . . . 211

9. Conclusions 213

10.Future Work 215

Bibliograf́ıa 216

Glossary 221

A. Attractors of the rule 126 222

A.1. Attractors with length equal to 2 . . . . . . . . . . . . . . . . . . . . 222

A.2. Attractors with length equal to 3 . . . . . . . . . . . . . . . . . . . . 222

A.3. Attractors with length equal to 4 . . . . . . . . . . . . . . . . . . . . 223

A.4. Attractors with length equal to 5 . . . . . . . . . . . . . . . . . . . . 223

A.5. Attractors with length equal to 6 . . . . . . . . . . . . . . . . . . . . 223

A.6. Attractors with length equal to 7 . . . . . . . . . . . . . . . . . . . . 224

A.7. Attractors with length equal to 8 . . . . . . . . . . . . . . . . . . . . 224

A.8. Attractors with length equal to 9 . . . . . . . . . . . . . . . . . . . . 224

A.9. Attractors with length equal to 10 . . . . . . . . . . . . . . . . . . . . 225

A.10.Attractors with length equal to 11 . . . . . . . . . . . . . . . . . . . . 225

A.11.Attractors with length equal to 12 . . . . . . . . . . . . . . . . . . . . 226

A.12.Attractors with length equal to 13 . . . . . . . . . . . . . . . . . . . . 226

A.13.Attractors with length equal to 14 . . . . . . . . . . . . . . . . . . . . 227

A.14.Attractors with length equal to 15 . . . . . . . . . . . . . . . . . . . . 227

A.15.Attractors with length equal to 16 . . . . . . . . . . . . . . . . . . . . 229

A.16.Attractors with length equal to 17 . . . . . . . . . . . . . . . . . . . . 231

A.17.Attractors with length equal to 18 . . . . . . . . . . . . . . . . . . . . 233

A.18.Attractors with length equal to 19 . . . . . . . . . . . . . . . . . . . . 234

A.19.Attractors with length equal to 20 . . . . . . . . . . . . . . . . . . . . 235

A.20.Attractors with length equal to 21 . . . . . . . . . . . . . . . . . . . . 236

A.21.Attractors with length equal to 22 . . . . . . . . . . . . . . . . . . . . 237



Índice general 8

A.22.Attractors with length equal to 23 . . . . . . . . . . . . . . . . . . . . 238

A.23.Attractors with length equal to 24 . . . . . . . . . . . . . . . . . . . . 239

B. Collisions made 240

B.1. Binary collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

B.1.1. Parameters to define the number of binary collisions to be

performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

B.1.2. Restrictions by dynamics . . . . . . . . . . . . . . . . . . . . . 244

B.1.3. g1 VS g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

B.1.4. g1 VS g6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

B.1.5. g1 VS s1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

B.1.6. g3 VS g4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

B.1.7. g3 VS s2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

B.1.8. g5 VS g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

B.1.9. g5 VS g6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

B.1.10. g5 VS s1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

B.1.11. s1 VS g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

B.1.12. s1 VS g6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

B.1.13. s2 VS g4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291



Índice de figuras

2.1. Example of a point and limited cycle attractor . . . . . . . . . . . . . 25

2.2. Example of a Linear System and a Non-Linear System . . . . . . . . 26

2.3. Cellular automaton with memory and without memory, applying a

local function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4. Example of an ECA class I: rule 160. . . . . . . . . . . . . . . . . . . 38

2.5. Graph of the frequency of living cells by evolution: rule 160 . . . . . . 38

2.6. Example of an ECA class II: rule 108 . . . . . . . . . . . . . . . . . . 38

2.7. Graph of the frequency of living cells by evolution: rule 108 . . . . . . 39

2.8. Example of an ECA class III: rule 126 . . . . . . . . . . . . . . . . . 39

2.9. Graph of the frequency of living cells by evolution: rule 126 . . . . . . 39

2.10. Example of an ECA class IV: rule 110 . . . . . . . . . . . . . . . . . 40

2.11. Graph of the frequency of living cells by evolution: rule 110 . . . . . . 40

2.12. Evolution of rule 126 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.13. Evolution of rule 126 with a change in cell 15 . . . . . . . . . . . . . 41

2.14. Evolution of rule 126 with differences . . . . . . . . . . . . . . . . . . 41

2.15. The De Bruijn diagram corresponding to rule 126 . . . . . . . . . . . 43

3.1. The definition of rule 126 according to its left and right neighbors. . . 49

3.2. Evolution of the rule 126 up to t = 50 with a living cell. . . . . . . . 50

3.3. Evolution of the rule 126 up to t = 70 with 30 % of its living cells. . . 50

3.4. Density of the changes in rule 126. . . . . . . . . . . . . . . . . . . . 51

3.5. Evolution of the random 126 rule. . . . . . . . . . . . . . . . . . . . . 52

3.6. Graph of the regular expression. . . . . . . . . . . . . . . . . . . . . . 55

3.7. Graph of the regular expression. . . . . . . . . . . . . . . . . . . . . . 56

9



Índice de figuras 10

4.1. Rule 126 with memory of 4 generations with a central living cell . . . 59

4.2. Rule 126 with memory of 4 generations with a random condition . . . 60

4.3. Tile for filtering 1(fp1) in the evolutionary space . . . . . . . . . . . . 62

4.4. Tile for filtering 2(fp2) in the evolutionary space . . . . . . . . . . . . 63

4.5. Glider 1(g1) moving within the space of evolutions . . . . . . . . . . . 64

4.6. Glider 2(g2) moving within the space of evolutions . . . . . . . . . . . 65

4.7. Glider 3(g3) moving within the space of evolutions . . . . . . . . . . . 66

4.8. Glider 4(g4) moving within the space of evolutions . . . . . . . . . . . 67

4.9. Glider 5(g5) moving within the space of evolutions . . . . . . . . . . . 67

4.10. Glider 6(g6) moving within the space of evolutions . . . . . . . . . . . 69

4.11. Still-life (s1) moving within the space of evolutions . . . . . . . . . . 70

4.12. Still-life 2(s2) moving within the space of evolutions . . . . . . . . . . 71

4.13. Glider-gun 1 (gun1) generating the gliders g1 and g2 within the space

of evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.14. Glider-gun 2 (gun2) generating the gliders g1 and g2 within the space

of evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.15. The collision points of the glider g1 in the space of evolutions . . . . . 74

4.16. The collision points of the glider g2 in the space of evolutions . . . . . 74

4.17. The collision points of the glider g3 in the space of evolutions . . . . . 75

4.18. The collision points of the glider g4 in the space of evolutions . . . . . 75

4.19. The collision points of the glider g5 in the space of evolutions . . . . . 76

4.20. The collision points of the glider g6 in the space of evolutions . . . . . 77

4.21. Collision points of the still-life s1 in the space of evolutions . . . . . . 77

4.22. Collision points of the still-life s2 in the space of evolutions . . . . . . 78

4.23. The different results obtained from colliding g1 and g2 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.24. The different results obtained from colliding g1 and g6 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.25. The collision obtained between g1 and s1 . . . . . . . . . . . . . . . . 83

4.26. The collision obtained between g3 and g4 . . . . . . . . . . . . . . . . 84

4.27. The collision obtained between g3 and s2 . . . . . . . . . . . . . . . . 85

4.28. The collision obtained between g5 and g2 . . . . . . . . . . . . . . . . 86



Índice de figuras 11

4.29. The collision obtained between g5 and g6 . . . . . . . . . . . . . . . . 87

4.30. The collision obtained between g5 and s1 . . . . . . . . . . . . . . . . 88

4.31. The collision obtained between s1 and g2 . . . . . . . . . . . . . . . . 89

4.32. The collision obtained between s1 and g6 . . . . . . . . . . . . . . . . 90

4.33. The collision obtained between s2 and g4 . . . . . . . . . . . . . . . . 91

4.34. The different results obtained from colliding 2g1 and g2 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.35. The different results obtained from colliding 2g1 and g6 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.36. The different results obtained from colliding 2g1 and s1 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.37. The different results obtained from colliding g1 + g1 and g2 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.38. The different results obtained from colliding g1 + g1 and g6 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.39. The different results obtained from colliding g1 + g1 and s1 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.40. The different results obtained from colliding g1 and 2g2 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.41. The different results obtained from colliding g1 and 2s1 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.42. The different results obtained from colliding g1 and g2 + g2 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.43. The different results obtained from colliding g1 and g2
2 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.44. The different results obtained from colliding g1 and g6 + g4 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.45. The different results obtained from colliding g1 and g2
6 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.46. The different results obtained from colliding g1 and g6g4 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



Índice de figuras 12

4.47. The different results obtained from colliding g1, s1 and g2 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.48. The different results obtained from colliding g1, s1 and g6 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.49. The different results obtained from colliding g2
1 and g2 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.50. The different results obtained from colliding g2
1 and g6 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.51. The different results obtained from colliding g2
1 and s1 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.52. The different results obtained from colliding g3 and 2s2 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.53. The different results obtained from colliding g3, g4 and g2 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.54. The different results obtained from colliding g3, g4 and g6 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.55. The different results obtained from colliding g3 and g2
4 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.56. The different results obtained from colliding g3 and g4g2 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.57. The different results obtained from colliding g3, s2 and s2 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.58. The different results obtained from colliding g3, s2 and g4 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.59. The different results obtained from colliding g3 and s2
2 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.60. The different results obtained from colliding g2
3 and g4 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.61. The different results obtained from colliding g2
3 and s2 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.62. The different results obtained from colliding g5 and 2g2 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



Índice de figuras 13

4.63. The different results obtained from colliding g5 and 2s1 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.64. The different results obtained from colliding g5 and g2 + g2 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.65. The different results obtained from colliding g5 and g2
2 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.66. The different results obtained from colliding g5 and g6 + g4 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.67. The different results obtained from colliding g5 and g2
6 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.68. The different results obtained from colliding g5 and g6g4 with its res-

pective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.69. The different results obtained from colliding g5, s1 and g2 with its

respective equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.70. The different results obtained from colliding g5 and s2
1 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.71. The different results obtained from colliding g2
5 and g2 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.72. The different results obtained from colliding g2
5 and g6 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.73. The different results obtained from colliding g2
5 and s1 with its respec-

tive equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.74. Some results of colliding 4 particles within the evolution space . . . . 143

5.1. Chomsky Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2. The basic logic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1. Some examples of eaters . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2. An example of a black hole . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3. Some examples of solitons . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4. Non-deterministic Finite automaton of regular language (01)∗ . . . . 161

6.5. Non-deterministic Finite automaton simplified (01)∗ . . . . . . . . . . 161



Índice de figuras 14

6.6. Non-deterministic Finite Automaton of the regular language (01)∗

with the new equivalences . . . . . . . . . . . . . . . . . . . . . . . . 162

6.7. Evaluation of the empty string ε . . . . . . . . . . . . . . . . . . . . . 163

6.8. Evaluation of the string 0 . . . . . . . . . . . . . . . . . . . . . . . . 164

6.9. Evaluation of the string 01 . . . . . . . . . . . . . . . . . . . . . . . . 164

6.10. Evaluation of the string 010101010 . . . . . . . . . . . . . . . . . . . 165

6.11. Evaluation of the string 01010101 . . . . . . . . . . . . . . . . . . . . 166

6.12. Generation of the branch tree for the string 010101 . . . . . . . . . . 168

6.13. The 4 combinations of the truth table for the XOR gate . . . . . . . 170

6.14. The 4 combinations of the truth table for the IF-THEN gate . . . . . 172

6.15. The 4 combinations of the truth table for the NAND gate . . . . . . 174

6.16. The AND gate built with NAND . . . . . . . . . . . . . . . . . . . . 175

6.17. The 4 combinations of the truth table for the AND gate . . . . . . . 176

6.18. The OR gate built with NAND . . . . . . . . . . . . . . . . . . . . . 177

6.19. The 4 combinations of the truth table for the OR gate . . . . . . . . 178

6.20. The NOT gate built based on NAND . . . . . . . . . . . . . . . . . . 179

6.21. The 2 combinations of the truth table for the NOT gate . . . . . . . 179

7.1. SOL’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.2. SOL’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.3. The classes which make up Elemental Cellular Automatons . . . . . . 185

7.4. The classes which make up Elemental Cellular Automatons . . . . . . 186

7.5. The classes which module of Rule 126 with memory is made of . . . . 187

7.6. The described classes which compose the module of Rule 126 with

memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.7. The clsses that compose the Loical Operations’module . . . . . . . . 191

7.8. The described classes which compose the module of Rule 126 with

memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.9. The system using the Elemental option . . . . . . . . . . . . . . . . . 194

7.10. The system using the Random setting . . . . . . . . . . . . . . . . . . 196

7.11. The system using the File setting . . . . . . . . . . . . . . . . . . . . 197

7.12. The system using the Manual option . . . . . . . . . . . . . . . . . . 198

7.13. The evolution using the tile for filtering 1 . . . . . . . . . . . . . . . . 200



Índice de figuras 15

7.14. The evolution using the tile for filtering 2 . . . . . . . . . . . . . . . . 201

7.15. 6 gliders and their combinations with tiles for filtering . . . . . . . . . 202

7.16. The 2 still-life and their combinatoins with tiles for filtering . . . . . 204

7.17. The regular expression’s settings . . . . . . . . . . . . . . . . . . . . . 206

7.18. The settings to handle Context-free grammars . . . . . . . . . . . . . 207

7.19. The settings to handle logic gates . . . . . . . . . . . . . . . . . . . . 208

8.1. Some photos of the event Celebration of Late Prof. Harold V. McIn-

tosh Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.2. Some photos of the event The Ninth International Conference on Com-

plex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A.1. Attractors with length equal to 16 . . . . . . . . . . . . . . . . . . . . 229

A.2. Attractors with length equal to 17 . . . . . . . . . . . . . . . . . . . . 231

A.3. Attractors with length equal to 18 . . . . . . . . . . . . . . . . . . . . 233

A.4. Attractors with length equal to 19 . . . . . . . . . . . . . . . . . . . . 234

A.5. Attractors with length equal to 20 . . . . . . . . . . . . . . . . . . . . 235

A.6. Attractors with length equal to 21 . . . . . . . . . . . . . . . . . . . . 236

A.7. Attractors with length equal to 22 . . . . . . . . . . . . . . . . . . . . 237

A.8. Attractors with length equal to 23 . . . . . . . . . . . . . . . . . . . . 238

A.9. Attractors with length equal to 24 . . . . . . . . . . . . . . . . . . . . 239

B.1. The 5 different collisions between the glider g1 in phase 1 and the 5

phases that the glider has g2 . . . . . . . . . . . . . . . . . . . . . . . 245

B.2. The 5 different collisions between the glider g1 in phase 2 and the 5

phases that the glider has g2 . . . . . . . . . . . . . . . . . . . . . . . 246

B.3. The 5 different collisions between the glider g1 in phase 3 and the 5

phases that the glider has g2 . . . . . . . . . . . . . . . . . . . . . . . 247

B.4. The 5 different collisions between the glider g1 in phase 4 and the 5

phases that the glider has g2 . . . . . . . . . . . . . . . . . . . . . . . 248

B.5. The 5 different collisions between the glider g1 in phase 5 and the 5

phases that the glider has g2 . . . . . . . . . . . . . . . . . . . . . . . 249

B.6. The 5 different collisions between the glider g1 in phase 1 and the 5

phases that the glider has g6 . . . . . . . . . . . . . . . . . . . . . . . 251



Índice de figuras 16

B.7. The 5 different collisions between the glider g1 in phase 2 and the 5

phases that the glider has g6 . . . . . . . . . . . . . . . . . . . . . . . 252

B.8. The 5 different collisions between the glider g1 in phase 3 and the 5

phases that the glider has g6 . . . . . . . . . . . . . . . . . . . . . . . 254

B.9. The 5 different collisions between the glider g1 in phase 4 and the 5

phases that the glider has g6 . . . . . . . . . . . . . . . . . . . . . . . 255

B.10.The 5 different collisions between the glider g1 in phase 5 and the 5

phases that the glider has g6 . . . . . . . . . . . . . . . . . . . . . . . 256

B.11.The 5 different collisions between the glider g1 in phase 1 and the 2

phases that the still-life s1 has . . . . . . . . . . . . . . . . . . . . . . 257

B.12.The 5 different collisions between the glider g1 in phase 2 and the 2

phases that the still-life s1 has . . . . . . . . . . . . . . . . . . . . . . 258

B.13.The 5 different collisions between the glider g1 in phase 3 and the 2

phases that the still-life s1 has . . . . . . . . . . . . . . . . . . . . . . 259

B.14.The 5 different collisions between the glider g1 in phase 4 and the 2

phases that the still-life s1 has . . . . . . . . . . . . . . . . . . . . . . 259

B.15.The 5 different collisions between the glider g1 in phase 5 and the 2

phases that the still-life s1 has . . . . . . . . . . . . . . . . . . . . . . 260

B.16.The possible collision between the glider g3 in phase 1 and the glider

g4 in phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

B.17.The possible collision between the glider g3 in phase 2 and the glider

g4 in phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

B.18.The possible collision between the glider g3 in phase 3 and the glider

g4 in phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

B.19.The possible collision between the glider g3 in phase 4 and the glider

g4 in phase 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

B.20.The possible collision between the glider g3 in phase 5 and the glider

g4 in phase 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

B.21.The possible collisions between the glider g3 in phase 1 and the still-life

s2 in phases 1 and 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

B.22.The possible collisions between the glider g3 in phase 2 and the still-life

s2 in phases 2 and 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 265



Índice de figuras 17

B.23.The possible collisions between the glider g3 in phase 3 and the still-life

s2 in phases 3 and 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

B.24.The possible collisions between the glider g3 in phase 4 and the still-life

s2 in phases 4 and 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

B.25.The possible collisions between the glider g3 in phase 5 and the still-life

s2 in phases 5 and 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

B.26.The 5 different collisions between the glider g5 in phase 1 and the 5

phases that the glider g2 has . . . . . . . . . . . . . . . . . . . . . . . 269

B.27.The 5 different collisions between the glider g5 in phase 2 and the 5

phases that the glider g2 has . . . . . . . . . . . . . . . . . . . . . . . 270

B.28.The 5 different collisions between the glider g5 in phase 3 and the 5

phases that the glider g2 has . . . . . . . . . . . . . . . . . . . . . . . 271

B.29.The 5 different collisions between the glider g5 in phase 4 and the 5

phases that the glider g2 has . . . . . . . . . . . . . . . . . . . . . . . 272

B.30.The 5 different collisions between the glider g5 in phase 5 and the 5

phases that the glider g2 has . . . . . . . . . . . . . . . . . . . . . . . 273

B.31.The 5 different collisions between the glider g5 in phase 1 and the 5

phases that the glider g6 has . . . . . . . . . . . . . . . . . . . . . . . 275

B.32.The 5 different collisions between the glider g5 in phase 2 and the 5

phases that the glider g6 has . . . . . . . . . . . . . . . . . . . . . . . 276

B.33.The 5 different collisions between the glider g5 in phase 3 and the 5

phases that the glider g6 has . . . . . . . . . . . . . . . . . . . . . . . 278

B.34.The 5 different collisions between the glider g5 in phase 4 and the 5

phases that the glider g6 has . . . . . . . . . . . . . . . . . . . . . . . 279

B.35.The 5 different collisions between the glider g5 in phase 5 and the 5

phases that the glider g6 has . . . . . . . . . . . . . . . . . . . . . . . 280

B.36.The 5 different collisions between the glider g5 in phase 1 and the 2

phases of the still-life s1 . . . . . . . . . . . . . . . . . . . . . . . . . 281

B.37.The 5 different collisions between the glider g5 in phase 2 and the 2

phases of the still-life s1 . . . . . . . . . . . . . . . . . . . . . . . . . 282

B.38.The 5 different collisions between the glider g5 in phase 3 and the 2

phases of the still-life s1 . . . . . . . . . . . . . . . . . . . . . . . . . 283



Índice de figuras 18

B.39.The 5 different collisions between the glider g5 in phase 4 and the 2

phases of the still-life s1 . . . . . . . . . . . . . . . . . . . . . . . . . 284

B.40.The 5 different collisions between the glider g5 in phase 5 and the 2

phases of the still-life s1 . . . . . . . . . . . . . . . . . . . . . . . . . 284

B.41.The 5 different collisions between the still-life s1 in phase 1 and the 5

phases that the glider g2 has . . . . . . . . . . . . . . . . . . . . . . . 286

B.42.The 5 different collisions between the still-life s1 in phase 2 and the 5

phases that the glider g2 has . . . . . . . . . . . . . . . . . . . . . . . 287

B.43.The 5 different collisions between the still-life s1 in phase 1 and the 5

phases that the glider g6 has . . . . . . . . . . . . . . . . . . . . . . . 289

B.44.The 5 different collisions between the still-life s1 in phase 2 and the 5

phases that the glider g6 has . . . . . . . . . . . . . . . . . . . . . . . 290

B.45.The collision between the still-life s2 in phase 1 and the glider g4 in

phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

B.46.The collision between the still-life s2 in phase 2 and the glider g4 in

phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

B.47.The collision between the still-life s2 in phase 3 and the glider g4 in

phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

B.48.The collision between the still-life s2 in phase 4 and the glider g4 in

phase 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

B.49.The collision between the still-life s2 in phase 5 and the glider g4 in

phase 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

B.50.The collision between the still-life s2 in phase 6 and the glider g4 in

phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

B.51.The collision between the still-life s2 in phase 7 and the glider g4 in

phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

B.52.The collision between the still-life s2 in phase 8 and the glider g4 in

phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

B.53.The collision between the still-life s2 in phase 9 and the glider g4 in

phase 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

B.54.The collision between the still-life s2 in phase 10 and the glider g4 in

phase 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298



Índice de cuadros

4.1. Lines of cells to form the tile for filtering 1 . . . . . . . . . . . . . . . 62

4.2. Cell lines to form the tile for filtering 2 . . . . . . . . . . . . . . . . . 64

4.3. Lines of cells to form the glider 1 . . . . . . . . . . . . . . . . . . . . 65

4.4. Lines of cells to form the glider 2 . . . . . . . . . . . . . . . . . . . . 66

4.5. Lines of cells to form the glider 3 . . . . . . . . . . . . . . . . . . . . 67

4.6. Cell lines to form the glider 4 . . . . . . . . . . . . . . . . . . . . . . 68

4.7. Lines of cells to form the glider 5 . . . . . . . . . . . . . . . . . . . . 68

4.8. Lines of cells to form the glider 6 . . . . . . . . . . . . . . . . . . . . 69

4.9. Cell lines to form the still-life 1 . . . . . . . . . . . . . . . . . . . . . 70

4.10. Cell lines to form the still-life 2 . . . . . . . . . . . . . . . . . . . . . 72

4.11. Summary table of binary collisions . . . . . . . . . . . . . . . . . . . 93

4.12. Summary table of ternary collisions . . . . . . . . . . . . . . . . . . . 142

5.1. AND gate truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2. OR gate truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3. NOT gate truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4. NAND gate truth table . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.5. NOR gate truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.6. XOR gate truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7. XNOR gate truth table . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.8. IF gate truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1. Table of transitions of the NFA of the language (01)∗ . . . . . . . . . 161

6.2. Table of transitions of the NFA of the language (01)∗ with particles . 162

6.3. Truth table of the XOR gate with particles . . . . . . . . . . . . . . . 169

19



Índice de cuadros 20

6.4. Truth table of the IF-THEN gate with particles . . . . . . . . . . . . 171

6.5. Truth table of the NAND gate with particles . . . . . . . . . . . . . . 173

6.6. Truth table of the AND gate which were designed using NAND . . . 173

6.7. Truth table of the OR gate which where designed using NAND . . . . 175

6.8. Truth table of the NOT gate with NAND . . . . . . . . . . . . . . . . 177

A.1. Attractors for strings of length equal to 2 . . . . . . . . . . . . . . . . 222

A.2. Attractors for strings of length equal to 3 . . . . . . . . . . . . . . . . 223

A.3. Attractors for strings of length equal to 4 . . . . . . . . . . . . . . . . 223

A.4. Attractors for strings of length equal to 5 . . . . . . . . . . . . . . . . 223

A.5. Attractors for strings of length equal to 6 . . . . . . . . . . . . . . . . 224

A.6. Attractors for strings of length equal to 7 . . . . . . . . . . . . . . . . 224

A.7. Attractors for strings of length equal to 8 . . . . . . . . . . . . . . . . 224

A.8. Attractors for strings of length equal to 9 . . . . . . . . . . . . . . . . 225

A.9. Attractors for strings of length equal to 10 . . . . . . . . . . . . . . . 225

A.10.Attractors for strings of length equal to 11 . . . . . . . . . . . . . . . 226

A.11.Attractors for strings of length equal to 12 . . . . . . . . . . . . . . . 226

A.12.Attractors for strings of length equal to 13 . . . . . . . . . . . . . . . 227

A.13.Attractors for strings of length equal to 14 . . . . . . . . . . . . . . . 227

A.14.Attractors for strings of length equal to 15 . . . . . . . . . . . . . . . 228

A.15.Attractors for strings of length equal to 16 . . . . . . . . . . . . . . . 230

A.16.Attractors for strings of length equal to 17 . . . . . . . . . . . . . . . 232

B.1. Table of possible binary collisions . . . . . . . . . . . . . . . . . . . . 242



Caṕıtulo 1

Introduction

The automata theory is the study of abstract calculation devices, that is, of the

“ machines ”. Alan Turing proposed in the thirties a machine capable of performing

the calculations currently performed by computers, his goal was to describe the

existing limitations of a calculating machine, these conclusions not only apply to

Turing machines, but to all actual real machines.

The word automaton evokes something that pretends to imitate the proper fun-

ctions of living beings, especially related to movement. In the field of translators,

processors, compilers and interpreters, the fundamental thing is not the simulation

of the movement, but the simulation of processes to deal with information. The

information is encoded in strings of symbols, and an automaton is a device that

manipulates chains of symbols that are represented at its entrance, producing other

strips or chains at its exit [14].

Thus, the information acts as a raw material that is processed along the automata.

For this processing, several models have been defined that allow the manipulation of

information according to what one wishes to model, with the emergence of cellular

automata.

The cellular automata (AC) are simple mathematical idealizations of natural

systems. They are used in the simulation of systems where different elements interact

with each other and generate a result according to the space and the states of the

elements in the time in which they interact. These mathematical models have proven

to generate complex behavior even when the rules that determine the interaction are

21



Caṕıtulo 1. Introduction 22

simple [39].

The word “ complex ” is a word of the times, like the “ growing complexity

of life ” often cited. Science has begun to try to understand complexity in nature,

a point contrary to the traditional scientific goal of understanding the fundamental

simplicity of the laws of nature. The field of the study of Complex Systems maintains

that the dynamics of Complex Systems are based on universal principles that could

be used to describe disparate problems from the physics of particles to the economies

of societies [6].

In this Thesis 2017-B077 Simulator of Logical Operations from a Cellular Au-

tomaton with chaotic behavior to its complex projection, the properties of an AC

that define it as a Chaotic System to understand its dynamics and compare it with

the complex dynamics presented when adding a function to extend to the AC. The

elements that define a complex dynamics called “ particles ” will be described and

their interactions with both their environment and other particles will be shown

through the modeling of equations. Finally, these equations will be used to define

logical gates and thus be able to explore the computational capabilities of CA.



Caṕıtulo 2

Fundamental Concepts

2.1. Dynamic Systems

2.1.1. Definition of a Dynamic System

A Dynamic System is a system that, in reality or conceptually, evolves over time.

A simple pendulum is a system that evolves over time. The process of finding a

square root using Newton’s formula is a system that conceptually evolves over time,

but this can also be considered simply as a sequence of approximations.

Dynamic Systems have states denoted by Si. As it evolves, the System moves

through a sequence of states:

S0, ..., Si−2, Si−1, Si, Si+1, Si+2, ...

A state is represented by a value of some kind: an integer, a real number, a vector

of real numbers, a matrix, etc. The value should completely represent the state but

should not contain redundant information.

The set of all states is called the “state of states” of the system. A sequence of

states is called a trajectory or an orbit. When a system evolves from a state Si to

a subsequent state Si+1, we say that you experience a state transition. If we see the

system as a direct graph, where the vertices are the states and the transitions are

the edges, then a trajectory is a walk in the graph [13].

23



Caṕıtulo 2. Fundamental Concepts 24

2.1.2. Classification of Systems

There are different classifications of the Systems according to their input values,

their outputs, their behavior, etc. We will only describe according to the input and

output data they use, so we find two types of systems:

1. Discrete Systems: The discrete systems are those that can be modeled with

whole integer values and have points defined in the space to process and obtain

an output that is also discrete.

2. Continuous Systems: Continuous systems are those that can be modeled

with real values, that is, both their inputs and outputs are of ı̈nfiniteçharacter.

They can be seen graphically as a line in space [16].

2.1.3. Description of the behavior of the Systems

Dynamic Systems receive that name due to the behavior they generate as they

evolve over time. This behavior has been studied for decades and has generated

researchers around the world to propose theorems to understand this behavior. This

section will show the ways to describe the behavior that will be used for our system

of interest.

Attractors and repellors

The region of the state space in which there are no exit routes is called a Attractor.

An attractor that consists of only one state from which its successor is itself is a point

attractor (and a balanced state). An attractor that consists of a cycle of states is

called a limited cycle. The set of states that eventually lead to an attractor are

known as “Basin of attraction”(they are also called as Gardens of Eden [46]) of the

attractor.

The opposite of an attractor is a “ repellor ”, which is a region of the state space

in which trajectories arrive but do not enter. A repellent point is a state of unstable

equilibrium.

The attractors usually have a lower dimension than the phase space. For example,

an attractor could be a line in two dimensions (2D) in a three-dimensional (3D) phase



Caṕıtulo 2. Fundamental Concepts 25

space. Some attractors have dimensions that are not integers. For example, a row

of points may contain too many points to be considered zero-dimensional but not

enough points to form a line; said row would have a dimension between 0 and 1. A

strange attractor is an attractor with a fractional dimension [13].

In figure 2.1 two attractors are shown, one point and one limited cycle. The blue

points symbolize the states that the attractor contains and the red lines symbolize

the trajectories that it has. As can be seen, the first one only has a point in which,

regardless of the evolutions in time, it will remain infinitely; while the second will

also remain cycling but in a finite set of states.

Figura 2.1: Example of a point and limited cycle attractor

Linearity

An important property of a very wide class of continuous systems is that, whether

linear or non-linear, they behave like linear systems in a small region of phase space

that encloses a state of equilibrium. For this reason, much of the classical theory of

complex systems focused on their behavior near equilibrium states.

The Linearity implies how much ”stablëıs a System. It can be observed in a

simple way if we imagine a straight line, it maintains a constant shape and it is

understandable how it grows as we move through the axes of the catersian plane



Caṕıtulo 2. Fundamental Concepts 26

(time). However, if we imagine a function that has asymptotes and inflection points,

it is no longer trivial to measure how much it grows at what moment of time.

The researchers recently realized that, although they have the convenient pro-

perty of being easily analyzed, the behavior near equilibrium is not very interesting.

This realization led to interest in systems far from equilibrium, and to the study of

chaos [16].

In figure 2.2 we can observe two graphs showing the linear and non-linear testing

of a System. The red line symbolizes the value of the System in the time shown. The

first graph shows how the red line is ”maintained̈ın a harmonic and simple movement,

while in the second graph the red line does not have any distinguishable pattern and

it seems that it was generated in a random”way.

Figura 2.2: Example of a Linear System and a Non-Linear System

Conditions for chaos

All systems are represented by equations that are usually differential, these equa-

tions mathematically model the behavior of the system, contain the inputs, outputs

and the relationship between them. Thus, the necessary conditions for a chaotic

behavior are:

1. There must be at least three state variables in the system description.

2. At least one of the equations must be non-linear.



Caṕıtulo 2. Fundamental Concepts 27

2.1.4. Quantitative analysis of a Dynamic System

We already observed in the section 2.1.3 some ways to describe the behavior of

Dynamic Systems, however, this is done in a visual way. Now we will see an important

component in the analysis of the chaos of a System.

Lyapunov Exponent

This measure of chaos was introduced by the famous Russian mathematician

Alexander Mijailovic Lyapunov at the beginning of the 20th century, the Lyapunov

Exponents, as they are now known, they are a set of numbers that are usually used

to detect the presence of chaos in dynamic systems.

The idea in general is to measure how quickly the contiguous global configurations

move away or differ with respect to time.

In chaos theory, there are 3 fundamental properties on chaotic systems(see 2.5 for

more information), one of which is sensitive to initial conditions. This is that with

very little variation of the initial conditions the result is completely different from

our starting point. Thus, we can determine how chaotic a System is according to the

variation of the entries [12].

The exponent of Lyapunov for a system is the average value of λ(x) for many

starting points x. And its calculation is done with the formula of the equation 2.1.4:

λ(x0) = ĺım
n→∞

1

n

n−1∑
i=0

loge f
′
(xi)

Where:

1. n is the possible number of states of the System.

2. f(xi) is the equation that determines the behavior of the System, to this equa-

tion we obtain its first derivative.

This exponent allows us to measure the çhaos.of our system, however the mathe-

matical calculation is done only for Discrete Systems (2.1.2)



Caṕıtulo 2. Fundamental Concepts 28

2.2. Cellular Automata

2.2.1. Definition

A Cellular Automata(CA) is defined as a sextuple in the following way:

C = (S, S0, G, d, f, F )

Where:

1. S is a finite set of states.

2. S0 is the initial state, which belongs to S.

3. Gi is a cell’s neighborhood of the cell i

4. d is the dimension of the cellular automaton.

5. f : G→ Σ is the local function of the automaton, where G = { Gi : i is a cell}

6. The global mapping, F

F : S → S

7. C(n) = F (n)(S) is the state that we get after the iteration n.

8. C(n+1) = F(C(n)) [35]

Also, let’s define a cellular automaton as a dynamic system(see 2.1) like:

1. The number of possible states of the cells is finite.

2. The recurrence relation is finite, that is, the new state of a cell depends solely

on the state of a finite number of cells in the previous instant.

3. The recurrence relation is invariant in the transfer of space and time, that is,

it does not make use of the absolute position of a cell in space and time [3].



Caṕıtulo 2. Fundamental Concepts 29

2.2.2. Elements that make up a CA

The cellular automata have basic elements, these are:

1. Regular Fix: Whether it is a 1-dimensional plane or an n-dimensional space,

this is the space of evolutions, and each homogeneous division of the array is

called a cell.

2. Initial setup: It consists of assigning a status to each of the cells in the initial

evolution space of the system

3. Neighborhoods: Defines the contiguous set of cells and relative position with

respect to each of them. To each different neighborhood corresponds an element

of the set of states.

4. Local Function: It is the evolution rule that determines the behavior of the

AC. It is made up of a central cell and its neighborhoods. It defines how each

cell must change state depending on the previous states of its neighborhoods.

It can be an algebraic expression [20].

Additionally, in order to better understand its visual representation, it is ne-

cessary to mention the types of boundaries or borders, of the plane in which it is

developed, in which it is classified:

1. Open Border: It is considered that all the cells outside the space of the

automaton take a fixed value.

2. Reflective border: The cells outside the space of the automaton take the

values that are inside, as if it were a mirror.

3. Periodic or Circular Border: The cells that are on the border interact with

their immediate neighbors and with the cells that are at the opposite end of

the array, as if we were folding the plane like a cylinder.

4. Without Border: The representation of automaton has no limits, it is infinite.

This is only practical when you have software that simulates the evolution of

the automaton [11].



Caṕıtulo 2. Fundamental Concepts 30

2.2.3. Extension of the CA: functions with memory

The conventional cellular automata are ahistorical (without memory), the new

state of a cell depends on the configuration of the neighbors only in the previous

step in the time of ϕ. The Cellular Automata with memory can be considered as an

extension of the standard reference frame of cellular automata where each cell xi he

is allowed to remember some period of his previous evolutions. Basically, memory is

based on the state and history of the system, so we design a memory function ϕ as

follows:

ϕ(X t−τ
i , ..., X t−1

i , X t
i ) −→ Si

such that τ < t determines the degree of backward memory and each cell

displaystyleSiεΣ is a function of the series of states in the cell displaystyleXi until

the passage of time displaystylet− τ . Finally, to execute the evolution, we apply the

original rule as follows:

ϕ(..., Sti−1, S
t
i , S

t
i+1, ...) −→ X t+1

i

In cellular automata with memory, while the mapping ϕ remains unchanged, a

historical memory of past iterations is conserved by each cell as a summary of its

previous states; therefore, all cells map memory to the mapping ϕ. As an example,

we can take the memory function ϕ as a majority memory:

ϕmaj −→ Si

Then, ϕmaj represents the classical majority function for three variables, as fo-

llows:

ϕmaj : (X1 ∧X2) ∨ (X2 ∧X3) ∨ (X3 ∧X1) −→ X

in the cells (X t−τ
i , ..., X t−1

i , X t
i ) and define a temporary ring before calculating

the following global configuration c. In case of a loop, the majority function allows

breaking it in favor of zero if Xτ−1 = 0, or for one if Xτ−1 = 1. The representation

of an elementary cellular automaton with memory is given as follows:

ϕCARm : τ

Where CAR represents the decimal notation of a particular elementary cellular

automaton and m the type of memory given with a specific value of τ. Thus, the ma-

jority memory (maj) working on the 126th rule of the elementary cellular automata

checking 4 cells (τ = 4) of history is denoted simply as R126maj : 3. The figura 2.3

represents in detail the memory working on an elementary cellular automaton.



Caṕıtulo 2. Fundamental Concepts 31

Memory is as simple as any cellular automaton and its local function but so-

metimes the global behavior produced by the local rule is totally unpredictable. In

the figure 2.3 we can observe how memory works in comparison with an ahistorical

automaton.

Figura 2.3: Cellular automaton with memory and without memory, applying a local
function.

Some authors define memory rules as those with dependence on ϕ in the state

of the cell to be updated. Then the rules of a dimension without memory take the

form: X t+1 = ϕ(X t
i−1, X

t
i+1). The use of associative locution memory usually refers,

when used in the context of cellular automata, to the study of the configurations of

attractors, which are argued by Wuensche to constitute the global contents of the

addressable memory network in the meaning of Hopfield. This study of the attractors

will be discussed in detail in chapter 2.3.2.

There are several functions that allow you to manage the part with memory,

which are:

1. Majority (majority): This function starts from the number of evolutions passed

to be taken. Imagine that we are going to take up τ = t−4, there are 3 possible

situations: if the number of living cells is greater than that of dead cells, a 1

will be added to the temporary ring; If the number of dead cells is greater than



Caṕıtulo 2. Fundamental Concepts 32

that of living cells, then a 0 will be added to the time ring, if it is the same

number of living cells as dead cells, the value of τ = t− 1.

2. Minority (minority): Taking up again τ = t−4, there are 3 possible situations:

if the number of living cells is less than that of dead cells, a 1 will be added

to the temporary ring; if the number of dead cells is less than that of living

cells, a 0 will be added to the temporary ring, if the same number is added,

the value of τ = t− 1

3. Parity(parity): This function implies that if we take up τ = t−4 then the values

of the 4 cells will be added(zeros and ones), and to that value a modulus 2 will

be applied, that is, if the value of the sum is odd then the value to add in the

temporal ring is a 1, unless, a 0 will be added.

In all cases, when you have the temporary ring the elementary rule will be applied

to it and the result will be the next evolution of the automaton.

2.3. Elementary Cellular Automata

2.3.1. Background

Despite its very simple construction, nothing like the general cellular automata

seems to have been considered before around the fifties. However, in the 1950s -

inspired in various ways by the advent of electronic computers - several different

types of systems equivalent to cellular automata were introduced independently.

A variety of precursors can be identified. Operations on sequences of digits had

been used since antiquity in arithmetic. The approximations of finite differences to

differential equations began to emerge in the early twentieth century and were well

known in the thirties. And the Turing machines invented in 1936 were based on the

thought of arbitrary operations on sequences of discrete elements.

The most familiar form in which cellular automata were introduced (and which

eventually led to their name) was through the work of John von Neumann in the

attempt to develop an abstract model of self-reproduction in biology-a subject that

had emerged of the investigations in cybernetics. Around 1947, perhaps based on



Caṕıtulo 2. Fundamental Concepts 33

chemical engineering, von Neumann began thinking about models based on 3D fac-

tories described by partial differential equations. He soon switched to thinking about

robotics and imagined maybe implementing an example using a toy building set. By

analogy with electronic circuit designs, he realized that 2D should be enough. And

following a 1951 suggestion by Stanislaw Ulam (which may have already indepen-

dently considered the problem) he simplified his model and ended up with a 2D

cellular automaton (he apparently later hoped to convert the results back to diffe-

rential equations). The particular cellular automaton he built in 1952 had 29 possible

colors for each cell and complicated rules specifically configured to emulate the ope-

rations of electronic computer components and various mechanical devices. To give

a mathematical proof of the possibility of self-reproduction, von Neumann then des-

cribed the construction of a cellular configuration of 200,000 to be reproduced (the

details were filled in by Arthur Burks in the early 1960s). Von Neumann seems to

have believed, presumably in part, by seeing the complexity of real biological orga-

nisms and electronic computers, that something like this level of complexity would

inevitably be necessary for a system to exhibit sophisticated capabilities such as

self-reproduction.

By the end of the 1950s it had been observed that cellular automata could be

seen as parallel computers, and particularly in the 1960s a sequence of increasingly

detailed and technical theorems was demonstrated - often analogous to those of Tu-

ring machines - about their formal computational abilities. Attempts at connecting

the cellular automata to the mathematical discussions of dynamic systems began in

the late 1960s, although, as discussed below, this had already been done a decade

earlier, with different terminology. And by the mid-1970s work on cellular automata

had become quite esoteric and interest in it had largely vanished. (However, some

work continued, especially in Russia and Japan). Note that even in computer scien-

ce, various names were used for cellular automata, including tessellation automata,

cellular spaces, iterative automata, homogeneous structures, and universal spaces.

Despite the lack of scientific research, an example of a cellular automaton entered

the recreational computing in an important way in the early seventies. Apparently

motivated in part by issues of mathematical logic, and partly by the work of “ simu-

lation games ” by Ulam and others, John Conway in 1968 started doing experiments



Caṕıtulo 2. Fundamental Concepts 34

(mostly by hand, but later on a PDP computer). -7) with a variety of different rules

of 2D cellular automata, and in 1970 had developed a simple set of rules that he

called “ The Game of Life ”, which exhibit a series of complex behaviors. Largely

through popularization in Scientific American by Martin Gardner, life became widely

known. An immense amount of effort was devoted to finding initial special conditions

that give particular forms of repetitive or other behavior, but virtually no systematic

scientific work was done (perhaps in part because even Conway treated the system

largely as a recreation) and almost without exception only The very specific rules of

Life were investigated. (In 1978 as a possible 1D analogue of life easier to implement

in the first personal computers, Jonathan Millen nevertheless briefly considered what

turns out to be the code 20 k = 2, r = 2 totalist rule.)

Quite disconnected from all this, even in the 1950s, specific types of 2D and 1D

cellular automata were already being used in various electronic devices and special

purpose computers. In fact, when digital image processing began in the mid-fifties

(for applications such as optical character recognition and microscopic particle coun-

ting), the rules of 2D cellular automata used to be used to eliminate noise. And for

several decades, starting in 1960, a long line of so-called cellular logic systems was

built to implement 2D cellular automata, mainly for image processing. Most of the

rules used were established specifically to have a simple behavior, but occasionally it

was observed as a largely recreational issue that, for example, patterns of alternating

stripes (“ custering ”) could be generated.

In pure mathematics, infinite sequences of 0 and 1 have been considered in various

forms since at least the 1800s. Beginning in the 1930s, the development of symbolic

dynamics led to the investigation of the assignments of such sequences to whether

same. And in the mid-fifties studies were being made (especially by Gustav Hedlund)

of the so-called switch-commutation block maps, which happen to be exactly 1D

cellular automata. In the fifties and early sixties there was work in this area (at least

in the United States) by distinguished pure mathematicians, but as it was largely for

application to cryptography, much of it was kept secret . And what was published

was mostly abstract theorems about characteristics too global to reveal any kind of

complexity that was discussed.

Specific types of cellular automata have also emerged - usually under different



Caṕıtulo 2. Fundamental Concepts 35

names - in a wide range of situations. In the late fifties and early sixties, 1D cellular

automata were studied as a way to optimize circuits for arithmetic and other ope-

rations. Starting in the 1960s, simulations of idealized neural networks sometimes

had neurons connected to neighbors in a grid, producing a 2D cellular automaton.

Similarly, several models of active media - particularly heart and other muscles - and

reaction diffusion processes used a discrete grid and discrete excitation states, corres-

ponding to a 2D cellular automaton. (In physics, discrete idealizations of statistical

mechanics and dynamic versions of systems such as the Ising model were sometimes

close to cellular automata, except for the crucial difference of having randomness

built into their underlying rules.) Cellular automata Additives such as rule 90 had

implicitly emerged in the studies of the binomial prime modulus coefficient in the

nineteenth century, but also appeared in various scenarios, such as the “rickety tree

forests” studied around 1970.

However, in the late 1970s, despite all these different directions, research into sys-

tems equivalent to cellular automata had largely disappeared. That this should have

happened just at the time computers were becoming widely available for exploratory

work is ironic.

2.3.2. Definition

The Elementary Cellular Automata are one-dimensional automata where there

are two possible states (labeled 0 and 1) and the rule to determine the state of a

cell in the next generation depends only on the current state of the cell and its two

immediate neighbors. This is one of the simplest possible models of computing. There

are 23 = 8 possible configurations for a cell and its two immediate neighbors. The rule

that defines the cellular automaton has to specify the resulting state for each of these

possibilities, that is, that there are 223 = 256 possible elementary cellular automata.

Stephen Wolfram proposed a scheme, known as the Wolfram code, to assign each rule

a number from 0 to 255. Each possible current configuration is written in order, 111,

110, ..., 001, 000, and the resulting state for each of these configurations is written

in the same order and interpreted as the binary representation of a whole number.

Wolfram represents the one-dimensional cellular automata with two parameters

(k, r), where k = |Σ| is the number of states and r is the radius of neighbors, therefore,



Caṕıtulo 2. Fundamental Concepts 36

the domain of the ECA is defined by the parameters (2,1). There are Σn different

neighborhoods (where n = 2r + 1) and kk
n

different rules of evolution.

The elementary cellular automata, being the most basic because they are not

produced by difficult rules to follow, tend to show complex comportamients. During

the analysis of the elementary rules proposed by Wolfram, interesting patterns have

been found in some rules such as rule 110, in which even universal computation

has been found and patterns that give way to the study of super-colliders. This

exhaustive study of rule 110 was carried out by various people such as Harold V.

Mcintosh, Genaro J. Martinez, among others.

2.3.3. Properties

The aspect that most characterizes the CAs is their ability to achieve a series of

properties that arise from the local dynamics itself through the passage of time and

not from the beginning, applying to the whole system in general. Therefore it is not

easy to analyze the global properties of a CA from its beginning, complex by nature,

unless by way of simulation, starting from a state or initial configuration of cells and

changing at every moment the states of all of them synchronous way.

The cellular automata elementary are simulated by using a grid, where each cell

is represented by a square and being black when the state is 1, and white when the

state is 0. Simple rules such as rule 0 255 after a few evolutions they fall into a state

in which they are maintained over time, while rules such as the 110 evolve in time do

not show patterns in a simple way, but many evolutions are required that we would

not be able to obtain but by the fact that we can simulate them in a computer. The

fact that between the rules there are some simple and other complex, some equivalent

to apply to all evolutions a logical operation (example of this are rule 126 and rule

129, equivalent to apply a NOT to the entire space of evolutions), and even some

presenting universal computation.

Its dynamism, its evolutions that can fall into 4 classes according to Wolfram,

are those that allow the elementary cellular automata to become a true case study.



Caṕıtulo 2. Fundamental Concepts 37

2.3.4. Wolfram Classification

Wolfram, being the author of these rules, studied his behavior, writing his book

entitled “A new kind of science” in 2002, where he talks about everything he had

found about these rules, and in it he places its own classification, result of the analysis

in the theory of probability and the De Bruijn diagrams and the medium field theory,

which is:

1. Class I: Evolution to a uniform state. After a certain number of generations

have elapsed, all the cells of the automaton converge to a single state.

2. Class II: Evolution to isolated cyclical states. During the evolution of the auto-

maton, there are certain patterns of behavior that are repeated systematically

over time. These patterns can be clearly distinguished on a ”backgroundrepre-

sented by a single state which is opposite to that of the cells that represent the

pattern of cyclic behavior.

3. Class III: Evolution to broad cyclical states. As in a class II cellular automa-

ton, in a class III cellular automaton there are repetitive patterns of behavior,

although not so easily identifiable to the naked eye because the behavior of this

can be extremely chaotic, which makes the analysis of this type of automaton.

4. Class IV: Evolution to isolated complex states. This kind of automaton is a

combination of classes I, II and III. As in class II automata, there are isolated

cyclical behaviors, which makes a uniform “background” distinguishable, which

allows to identify such behaviors which are similar to those presented in a class

III automaton.

Thus, we can observe examples of this classification in the elementary cellular

automata as follows:

2.4. Tools used in the analysis of the ECA

Over the years, from the beginning of the study of cellular automata, when they

did not have a name or it was not known that they were actually working with



Caṕıtulo 2. Fundamental Concepts 38

Figura 2.4: Example of an ECA class I: rule 160.

Figura 2.5: Graph of the frequency of living cells by evolution: rule 160

Figura 2.6: Example of an ECA class II: rule 108

one of them, due to their complex behavior, various questions arose about how they

could formalize their study. At a certain moment it was decided that it would be



Caṕıtulo 2. Fundamental Concepts 39

Figura 2.7: Graph of the frequency of living cells by evolution: rule 108

Figura 2.8: Example of an ECA class III: rule 126

Figura 2.9: Graph of the frequency of living cells by evolution: rule 126

best to analyze them with the current tools for complex systems, giving way to the

projection towards tools such as the bubbling diagrams, the Wuensche classification

for the attractors and even their De Bruijn diagrams were obtained in various levels



Caṕıtulo 2. Fundamental Concepts 40

Figura 2.10: Example of an ECA class IV: rule 110

Figura 2.11: Graph of the frequency of living cells by evolution: rule 110

depending on the automaton.

2.4.1. Lyapunov Exponent for ECA

Take rule 126 as an example, let’s use an initial configuration of 30 cells in length:

111111100000101010001011001110 and evolve 10 times, obtaining the figure 2.12

Now let’s change the initial condition a bit, placing a living cell in cell 15, with

the initial configuration 111111100000111010001011001110, let’s look at the behavior

now in figure 2.13

We can see that the evolutions are different but we do not know exactly how

different they are, so let’s observe how the evolution of changing a cell changed, as

shown in figure 2.14

The part that is highlighted is the cells that are no longer the same as the first



Caṕıtulo 2. Fundamental Concepts 41

Figura 2.12: Evolution of rule 126

Figura 2.13: Evolution of rule 126 with a change in cell 15

Figura 2.14: Evolution of rule 126 with differences

evolution, so we can see how the chaos expands with a simple change, almost in each

evolution there was a change.

2.4.2. Wuensche Classification

Wuensche classifies the attractors of the automatons in 4 classes just like Wolfram,

but he is based mainly on the shape of the attractors, his garden of Eden and the

size of his cycle. So, we have that the classification is:

1. Class I: They have very short transients, mainly they are attractors of a point



Caṕıtulo 2. Fundamental Concepts 42

(although possibly they are also periodic attractors) very high in degree and

very high density in the leaves (very ordered dynamics). This class has either

one or a few states that will be cycling in time, while its Garden of Eden tends

to have many states that converge at one point.

2. Class II: They have very short transients, mainly small periodic attractors (but

can also have single-point attractors), high in degree and very high density in

their leaves. That is, class II have short or single-point courses, but they are

distinguished by having lower grade than class I.

3. Class III: They have very long transients, very long periodic attractors, they

are low in degree and have low density in their leaves (chaotic dynamics). This

type has its ring where they have their states that repeat very large, above the

1000 states, and have low density in their leaves and are low in degree (it does

not take long to reach the attractor states).

4. Class IV: They have moderate transients, moderate length of their periodic

attractors, are moderate in degree and very moderate density in their leaves

(possibly complex dynamics). This class does not have such large rings of states

that are repeated over time, nor is their degree high and they are very moderate

with respect to their leaves (there are not as many states to reach the attractor

states).

2.4.3. The De bruijn Diagrams

The De Bruijn Diagrams are very suitable to describe the rules of evolution of the

cellular automata of a dimension, although they were originally used in the theory

of the register of changes (the treatment of sequences where their elements overlap

each other) . The paths in a de Bruijn diagram can represent chains, configurations,

or classes of configurations in the evolutions space.

For a cetral automaton of a dimension of order (k, r), the De Bruijn diagram is

defined as a direct graph with k2r vertices and k2r+1 edges. The vertices are labeled

with the elements of the alphabet of length 2r. An edge directly from vertex i to

vertex j, if and only if, the 2r - 1 final symbols of i are the same as the initial 2r - 1

in j forming a vency of 2r + 1 states represented by ij.



Caṕıtulo 2. Fundamental Concepts 43

The De Bruijn diagram associated with rule 126 is represented in the figure 2.15

Figura 2.15: The De Bruijn diagram corresponding to rule 126

The following figure shows that there are two neighborhoods evolving towards 0

and six neighborhoods towards 1, so the highest frequency is from state 1, indicating

the possibility of having an injective automaton, that is, the existence of configura-

tions of the Garden of Eden. The classical analysis in graph theory has been applied

to de Bruijn diagrams to study issues such as reversibility; in another sense, the

cycles in the diagram indicate periodic constructions in the evolution of the automa-

ton if the label of the circle is in agreement with the sequence defined by its nodes,

taking limited periodic conditions. Take the equivalent construction of a de Bruijn

diagram to describe the two-step evolution of rule 126 (now having nodes composed

of sequences of 4 symbols).

The k-ways

Suppose there is a path from state i to state j that does not pass through a state

greater than k. There are two possible cases to consider:

1. The road does not pass through state k. In this case, the label on the road is

in the language of Rk−1
ij .



Caṕıtulo 2. Fundamental Concepts 44

2. The road passes through the state k at least once. We can divide the road

into several sections. The first one goes from state i to state k without passing

through k, the last section goes from state k to k without passing through

k, and the remaining intermediate sections go from k to k, without passing

through k. Note that if the path traversed the state k only once, then there

would be no ı̈ntermediate”stretch, only a path from i to k and a path from k

to j. The set of labels for all roads of this type is represented by the regular

expression Rk−1
ik (Rk−1

kk )∗Rk−1
kj . That is, the first expression represents the part

of the path that reaches the state k for the first time, the second represents the

part that goes from k to zero, one or more at a time, and the third expression

represents the part of the path that leaves k for the last time and goes to state

j.

If we combine the expressions for the paths of the two previous types, we have

the expression:

Rk
ij = Rk−1

ij +Rk−1
ik (Rk−1

kk )∗Rk−1
kj

for the labels of all roads from the state to the state that do not pass through

any state greater than k. If we construct these expressions in increasing order of

the super indexes, given that each Rk
ij it only depends on the expressions with the

smallest superscript, then all the expressions will be available when we need them.

Then we have Rn
ij for everything i and j. We can assume that state 1 is the initial

state, although acceptance states could be any set of states. The regular expression

for the language of the automaton is then the sum (union) of all the expressions Rn
ij

such that state j is a state of acceptance.

2.5. Chaotic Systems

2.5.1. Definition of a chaotic system

The theory of chaos was introduced in ecology by May (974, 1976) and Oster

(1976) in the context of real functions of real variable is being studied intensively in

recent years and appears in almost all non-linear discrete models.



Caṕıtulo 2. Fundamental Concepts 45

The first thing that catches our attention is the fact that we live immersed in

chaos. In the usual way, we call chaos everything that we are not able to systematize.

The first investigator of chaos was a meteorologist named Edward Lorentz. In

1960 he used a mathematical model to predict time, which consisted of a system

of 12 nonlinear equations. The simulation was carried out with a computer, which

gave as response a probable behavior of the atmosphere. On one occasion, he wanted

to repeat the previous calculations again, for this he re-entered the numbers on the

computer, but to save paper and time, he only used 3 decimal numbers instead of 6.

The surprising thing was that the result found was totally different to those obtained

in the previous time. From the analysis of this situation arose a new theory that is

known by the name of chaos theory.

What was really interesting was that very small differences in the initial condi-

tions had a great influence on the final resolution of the problem. To this effect they

have the small initial differences after it was given the name of butterfly effect: The

movement of a simple butterfly wing today produces a tiny change in the state of the

atmosphere. After a certain period of time, the behavior of the atmosphere diverges

from what it should have had. So, in a period of one month, a tornado that would

have devastated the Indonesian coast is not formed.

Before the appearance of this new theory, there were only two types of known

behaviors for a dynamic system: a fixed state, where variables never change, and

periodic behavior, where the system is in a “closed loop” and Repeat infinitely.

2.5.2. Properties

Some of the characteristic features of chaotic systems are:

1. They are very sensitive to the initial conditions. A very small change in the

initial data results in totally different results.

2. They look like a mess, or random facts, but they are not, there are rules that

determine their behavior. Random systems are not chaotic.



Caṕıtulo 2. Fundamental Concepts 46

2.5.3. Identification of a Chaotic System

Chaos is no more than a disorder only in appearance, it has very little to do

with chance. Although they seem to evolve randomly and erratically, these systems

actually have an underlying internal order. Therefore, even when they are unpredic-

table, they are also deterministic. Which means that its future state is determined

by its current state and obeys strict natural laws of dynamic evolution. But the-

se systems are so irregular that they never repeat their past behavior, even in an

approximate way.

Chaos seems to be part of the very structure of matter and is closely linked to the

phenomena of self-organization, since the system can spontaneously and recurrently

jump from one state to another of greater complexity and organization.

2.6. Complex Systems

2.6.1. Definition of a Complex System

The Complex Systems are characterized mainly because their behavior is un-

predictable. However, complexity is not synonymous with complication: the latter

refers to something tangled, tangled, difficult to understand. In reality, and for the

moment, there is no precise and absolutely accepted definition of what a complex

system is, but there may be some common peculiarities.

2.6.2. Properties

1. First, it is composed of a large number of relatively identical elements. For

example, cells in an organism, or people in a society.

2. Secondly, the interaction between its elements is local and originates an emer-

gent behavior that can not be explained from these elements taken in isolation.

A desert may contain billions of grains of sand, but its interactions are excee-

dingly simple compared to those that occur in bees in a swarm.

3. Finally, it is very difficult to predict its future dynamic evolution; that is, it

is practically impossible to predict what will happen beyond a certain time



Caṕıtulo 2. Fundamental Concepts 47

horizon.

In nature you can find a lot of examples of complex systems ranging from physics

to neurology, from economics to molecular biology, from sociology to mathematics.

For this reason, this kind of systems is not a rare or exceptional case but is ma-

nifested in the vast majority of the phenomena that are observed daily. However,

and despite its great diversity and abundance, generic dynamic behaviors can be

identified, regardless of their nature (physical, chemical, biological or social); among

them, the laws of growth, self-organization and emerging collective processes.

2.6.3. Identification of a Complex System

Most complex systems are unstable, they remain delicately balanced. Any mi-

nimal variation between its component elements can change, in an unpredictable

way, the interrelationships and, therefore, the behavior of the entire system. Thus,

the evolution of this class of systems is characterized by fluctuation, a situation in

which order and disorder alternate constantly. Their evolutionary states do not pass

through continuous and gradual processes, but they happen through reorganizations

and jumps. Each new state is just a transition, a period of “entropic rest”



Caṕıtulo 3

Rule 126 of ACE

3.1. Background

The cellular automata, as mentioned in the previous chapter, arose long ago, but

in the case of elementals the first person who spoke of them was Stephen Wolfram

in 1983, and since that date several studies have been made about the same. Rule

126 has a chaotic behavior, so Wolfram classified it as class III, although adding

an extension (memory), it can be seen that the rule behaves like a class IV. It

was demonstrated in the same way that the rule generates a regular language in

the book “ Scaling Phenomena in Disordered Systems ” written in 1991 by Roger

Pynn and Arne Skjeltorp, where it shows the attractors of the rule and how they

generate a regular language. From there the studies of the rule have been diverse,

from the analysis of its de Bruijn diagrams to its extension with memory, arriving

at a hypothesis that this rule has characteristics similar to the rule 110. Harold V.

McIntosh made an exhaustive exploration of rule 110, leaving gliders and gliders-

guns found in said rule, while Genaro J. Mart́ınez decided to explore rule 126 with

memory of 4 generations, writing articles about it, but leaving the exploration of

the elementary rule unfinished, it is for that is what is required to do the complete

exploration of the rule first, using the most common tools, as well as to describe why

it actually generates a regular language.

48



Caṕıtulo 3. Rule 126 of ACE 49

3.2. Definition of rule 126

Rule 126 is one of the elementary rules of cellular automata introduced by Stephen

Wolfram in 1983 (Wolfram 1983, 2002). Specifies the next color in a cell, depending

on its color and its immediate neighbors. The results of this rule are encoded in the

binary representation 126 = 011111102.

The definition of rule 126 graphically is that of the figure 3.1

Figura 3.1: The definition of rule 126 according to its left and right neighbors.

We can generalize this rule in the following way: when the cell that is being

evaluated, as well as its left and right neighbors have the same state(either 0 or 1),

then the next evolution will be a dead cell(0), otherwise it will be a living cell(1).

In this way we avoid using the 8 conditions that define it, although we can also use

its totalistic function that is not more than the sum of the current values of the 3

cells that are used to be evaluated. Imagine that our combination to evaluate is 011,

then its totalistic function will be 0 + 1 + 1 = 2, since the values are added, so we

can say that if the totalistic function of the combination we are evaluation is 0 or 3,

then the next evolucion will be 0, otherwise it will be 1.

Evolving the rule sometimes in time with a central living cell we can observe

what is shown in the figure 3.2

As we can see, rule 126 under these initial conditions does not seem to show

random and complex behaviors. Now, adding a random initial condition and again

evolving we can observe the evolution of the figure 3.3

As we can see, the rule under random conditions no longer shows the same uniform

behavior as before.

3.3. Propiedades

Given a sequence of 1 and 0, such as that generated by an automaton that evolves

from random initial conditions, a discrete Fourier transfromada can be performed



Caṕıtulo 3. Rule 126 of ACE 50

Figura 3.2: Evolution of the rule 126 up to t = 50 with a living cell.

Figura 3.3: Evolution of the rule 126 up to t = 70 with 30 % of its living cells.

to determine which combination of sinuisoidal functions best approximates that se-

quence. Particularly when the automaton has non-trivial attractors, this spectrum

may exhibit a variety of characteristics, such as those seen in rule 126. This power

spectrum is no more than the calculation of the discrete Fourier transform at various

times t.

The density of the evolutions is shown in the figure 3.4 with gray tones:

We can ask ourselves how the density of the black cells changes as the automaton

evolves. In this image, each shade of gray represents a particular density in a parti-



Caṕıtulo 3. Rule 126 of ACE 51

Figura 3.4: Density of the changes in rule 126.

cular line of cells. The upper line represents a set of initial conditions with increasing

density, and each step below shows the density of the state of the automaton after

evolving from those initial conditions. The number of different initial conditions used

is finite, but large enough to appear relatively continuous on the scales used here.

3.4. Classification of rule 126

According to Wolfram’s classification, rule 126 enters class III. We have already

commented that class III denotes chaotic behavior, and as in this case the rule that

is being studied falls into this classification it is time to see why. First, we will take

a random evolution of cells as seen in the figure 3.5

As we can see in the figure with random combination, the patterns found are

almost unpredictable, some are repeated but others definitely only happen once, this

behavior is known as chaotic, due to the complexity of describing it and finding a

function for its evolution.

3.5. The De Bruijn Diagram for rule 126

For rule 126, let’s get the k-ways of your De Bruijn diagram. Since this diagram

only has 4 states, we will take up k = 3 as our maximum, and we will start with k

= 0. So the k-ways are the following:



Caṕıtulo 3. Rule 126 of ACE 52

Figura 3.5: Evolution of the random 126 rule.

For k = 0

R0
00 = 0

R0
01 = 1

R0
02 = ∅

R0
03 = ∅

R0
10 = ∅

R0
11 = ∅+ ε = ε

R0
12 = 1

R0
13 = 1

R0
20 = 1

R0
21 = 1

R0
22 = ∅+ ε = ε

R0
23 = ∅

R0
30 = ∅

R0
31 = ∅

R0
32 = 1

R0
33 = 0

For k = 1



Caṕıtulo 3. Rule 126 of ACE 53

R1
00 = R0

00 +R0
01(R0

11)∗R0
10 = 0 + 1(ε)∗∅ = 0 + ∅ = 0

R1
01 = R0

01 +R0
01(R0

11)∗R0
11 = 1 + 1(ε)∗ε = 1 + 1 = 1

R1
02 = R0

02 +R0
01(R0

11)∗R0
12 = ∅+ 1(ε)∗1 = 11

R1
03 = R0

03 +R0
01(R0

11)∗R0
13 = ∅+ 1(ε)∗1 = 11

R1
10 = R0

10 +R0
11(R0

11)∗R0
10 = ∅+ ε(ε)∗∅ = ∅

R1
11 = R0

11 +R0
11(R0

11)∗R0
11 = ε+ ε(ε)∗ε = ε

R1
12 = R0

12 +R0
11(R0

11)∗R0
12 = 1 + ε(ε)∗1 = 1 + 1 = 1

R1
13 = R0

13 +R0
11(R0

11)∗R0
13 = 1 + ε(ε)∗1 = 1

R1
20 = R0

20 +R0
21(R0

11)∗R0
10 = 1 + 1(ε)∗∅ = 1

R1
21 = R0

21 +R0
21(R0

11)∗R0
11 = 1 + 1(ε)∗ε = 1

R1
22 = R0

22 +R0
21(R0

11)∗R0
12 = ε+ 1(ε)∗1 = ε+ 11

R1
23 = R0

23 +R0
21(R0

11)∗R0
13 = ∅+ 1(ε)∗1 = 11

R1
30 = R0

30 +R0
31(R0

11)∗R0
10 = ∅+ ∅(ε)∗∅ = ∅

R1
31 = R0

31 +R0
31(R0

11)∗R0
11 = ∅+ ∅(ε)∗ε = ∅

R1
32 = R0

32 +R0
31(R0

11)∗R0
12 = 1 + ∅(ε)∗1 = 1

R1
33 = R0

33 +R0
31(R0

11)∗R0
13 = 0 + ∅(ε)∗1 = 0

For k = 2

R2
00 = R1

00 +R1
02(R1

22)∗R1
20 = 0 + 11(ε+ 11)∗1 = 0 + (11)∗1

R2
01 = R1

01 +R1
02(R1

22)∗R1
21 = 1 + 11(ε+ 11)∗1 = 1 + (11)∗1

R2
02 = R1

02 +R1
02(R1

22)∗R1
22 = 11 + 11(ε+ 11)∗(ε+ 11) = (11)∗

R2
03 = R1

03 +R1
02(R1

22)∗R1
23 = 11 + 11(ε+ 11)∗11 = (11)∗

R2
10 = R1

10 +R1
12(R1

22)∗R1
20 = ∅+ 1(ε+ 11)∗1 = 1(11)∗1

R2
11 = R1

11 +R1
12(R1

22)∗R1
21 = ε+ 1(ε+ 11)∗1 + 1(11)∗1

R2
12 = R1

12 +R1
12(R1

22)∗R1
22 = 1 + 1(ε+ 11)∗(ε+ 11) = 1 + 1(11)∗

R2
13 = R1

13 +R1
12(R1

22)∗R1
23 = 1 + 1(ε+ 11)∗11 = 1 + 1(11)∗

R2
20 = R1

20 +R1
22(R1

22)∗R1
20 = 1 + (ε+ 11)(ε+ 11)∗1 = 1 + (11)∗1

R2
21 = R1

21 +R1
22(R1

22)∗R1
21 = 1 + (ε+ 11)(ε+ 11)∗1 = 1 + (11)∗1

R2
22 = R1

22 +R1
22(R1

22)∗R1
22 = (R1

22)∗ = (11)∗

R2
23 = R1

23 +R1
22(R1

22)∗R1
23 = 11 + (ε+ 11)(ε+ 11)∗11 = (11)∗

R2
30 = R1

30 +R1
32(R1

22)∗R1
20 = ∅+ 1(ε+ 11)∗1 = 1(11)∗1

R2
31 = R1

31 +R1
32(R1

22)∗R1
21 = ∅+ 1(ε+ 11)∗1 = 1(11)∗1

R2
32 = R1

32 +R1
32(R1

22)∗R1
22 = 1 + 1(ε+ 11)∗(ε+ 11) = 1 + 1(11)∗



Caṕıtulo 3. Rule 126 of ACE 54

R2
33 = R1

33 +R1
32(R1

22)∗R1
23 = 0 + 1(ε+ 11)∗11 = 0 + 1(11)∗

For k = 3

R3
00 = R2

00 +R2
03(R2

33)∗R2
30 = 0 + (11)∗1 + (11)∗(0 + 1(11)∗)∗1(11)∗1

R3
01 = R2

01 +R2
03(R2

33)∗R2
31 = 1 + (11)∗1 + (11)∗(0 + 1(11)∗)∗1(11)∗1

R3
02 = R2

02 +R2
03(R2

33)∗R2
32 = (11)∗ + (11)∗(0 + (11)∗)∗(1 + (11)∗)∗

R3
03 = R2

03 +R2
03(R2

33)∗R2
33 = (11)∗ + (11)∗(0 + (11)∗)∗(0 + (11)∗)∗

R3
10 = R2

10 +R2
13(R2

33)∗R2
30 = 1(11)∗1 + (1 + 1(11)∗)(0 + 1(11)∗)∗1(11)∗1

R3
11 = R2

11 +R2
13(R2

33)∗R2
31 = 1(11)∗1 + (1 + 11(11)∗)(0 + 1(11)∗)∗1(11)∗1

R3
12 = R2

12 +R2
13(R2

33)∗R2
32 = 1 + 1(11)∗ + (1 + 1(11)∗)(0 + 1(11)∗)∗(1 + 1(11)∗)

R3
13 = R2

13 +R2
13(R2

33)∗R2
33 = 1 + 1(11)∗ + (1 + 1(11)∗)(0 + 1(11)∗)∗(0 + 1(11)∗)

R3
20 = R2

20 +R2
23(R2

33)∗R2
30 = 1 + (11)∗1 + (11)∗(0 + 1(11)∗)∗1(11)∗1

R3
21 = R2

21 +R2
23(R2

33)∗R2
31 = 1 + (11)∗1 + (11)∗(0 + 1(11)∗)∗1(11)∗1

R3
22 = R2

22 +R2
23(R2

33)∗R2
32 = (11)∗ + (11)∗(0 + 1(11)∗)∗(1 + 1(11)∗)

R3
23 = R2

23 +R2
23(R2

33)∗R2
33 = (11)∗ + (11)∗(0 + 1(11)∗)∗(0 + 1(11)∗)

R3
30 = R2

30 +R2
33(R2

33)∗R2
30 = 1(11)∗1 + (0 + 1(11)∗)(0 + 1(11)∗)∗1(11)∗1

R3
31 = R2

31 +R2
33(R2

33)∗R2
31 = 1(11)∗1 + (0 + 1(11)∗)(0 + 1(11)∗)∗1(11)∗1

R3
32 = R2

32 +R2
33(R2

33)∗R2
32 = 1 + 1(11)∗ + (0 + 1(11)∗)(0 + 1(11)∗)∗(1 + 1(11)∗)

R3
33 = R2

33 +R2
33(R2

33)∗R2
33 = (0 + 1(11)∗)∗

As we can see in regular expressions, most are not large and some can not even be

implemented (those that do not allow generating at least one string of 2 characters in

length), also those that generate either a string of only zeros or some do not present

an interesting behavior due to the definition of rule 126, however, the last regular

expression is the one that allows us to obtain a complex and interesting behavior.

Getting some random strings from the regular expressionR3
33 = R2

33+R2
33(R2

33)∗R2
33 =

(0 + 1(11)∗)∗, the evolutions of the figures 3.6 and 3.7 are obtained.

3.6. Wuensche classification for rule 126

As we saw in the section of the attractors of the rule 126, with short chains we

can not observe a chaotic behavior, but when increasing the length and arriving

until l = 24 we can see something totally different. In the descriptive of Wuensche’s

classification we had what happened with class III, that its trees were not so full of



Caṕıtulo 3. Rule 126 of ACE 55

Figura 3.6: Graph of the regular expression.

history or large cycles, but they had a large number of possible routes to reach one

of the states attractor.

As observed for chains of length equal to 15, the largest attractor has a great

history, however, when it reaches the attractor state it does not have a large number

of states in which it cycles, only one. In that figure we can see that the attractor then

meets Wuensche’s classification. We can take another example within the attractors:

when the chain is of length equal to 24 we see that the cycles are increasing but not

significantly, a class IV has cycles of at least 100 states, in our case our attractor

states when they are a cycle oscillate between 10 - 20 states, but the density they

have in the leaves is high, such is the case of these attractors, which have many

states that converge to one, and this is one of the ways to reach the states that make

up the attractor, so we can conclude that the attractors of the rule 126 meet the

classification of Wuensche and this is clearly observed when we evolved with large

chains, from l = 13 you can see perfectly its chaotic behavior.



Caṕıtulo 3. Rule 126 of ACE 56

Figura 3.7: Graph of the regular expression.



Caṕıtulo 4

Rule 126 with memory of 4

generations

4.1. Background

While it is true that automata have characteristics that can turn them into com-

plex systems, they only care about the present evocation to generate the next, com-

pletely forgetting what they had generated in the past, which is why we call them

ahistorical. The case of the automatons with memory is that they take certain evo-

lutions past in time and by means of a function they calculate a temporary ring,

said ring is later evaluated with the rule of the automaton and the obtained result

is added to the following evolution, thus allowing Your story is important.

As with any automaton, rule 126 can be added the function with memory that

is desired to observe its behavior, in this work the rule of majority will be used

taking 4 generations, this function was analyzed and shown to the public by Ramón

Alonso -Sanz in his book “Cellular Automata with Memory” in 2009, where he shows

the automaton and its evolution and compares it with other elementary cellular

automata with applied memory. When this automaton evolves to more than 500

evolutions, the automaton shows structures that seem to move and repeat themselves

in two dimensions and are surrounded by a repetitive structure called the periodic

background, said structures were called gliders and the way in which they can be

observed can be observed. they move through the automaton and what happens if

57



Caṕıtulo 4. Rule 126 with memory of 4 generations 58

they collide with some other structure than their periodic background. After work by

Alonso-Sanz, in 2011 together with Genaro J. Mart́ınez and Andrew Adamatzy they

wrote an article entitled “Rule 126 Case Studying”, where they describe appreciable

gliders and some simulated collisions.

The reason why the memory was taken up to 4 generations, is that when τ = t−2,

generates the same evolution that if memory is not used, and in the case of τ = t−3,

these patterns are not observed during evolution, so increasing memory in the same

way shows patterns as gliders but it is not the object of study of this thesis.

4.2. Rule 126 with memory: majority function

Rule 126 with memory of 4 generations uses the majority function, which defines

that having a greater number of zeros or ones taking 4 generations back, then the

respective value will be used in the temporary ring, in case of being 2 zeros and 2

ones, the value that is in τ = t − 1. When applied to rule 126, we can observe the

evolution of the figure 4.1 for a space of 500 cells per 500 generations.

We can see inside the graph that some lines stand out more than others, and it

seems that they are surrounded by states that allow them to stand out, these lines

that move from left to right, vice versa or from top to bottom are the gliders and

the states that we they allow you to observe them and that you are around them is

known as the periodic background. The first 4 evolutions of the attractor are applied

the 126 of the ECA directly, from the 5th is when the memory function and the

temporary ring is applied. In the figure 4.2 we can see an evolution of the rule with

memory using a random condition with a density of 75 % of dead cells and 25 % of

living cells for a space of 500 cells for 500 generations.

4.3. Properties

One of the properties of the 126 rule with memory of 4 generations is that it has

several gliders with a period equal to 2 or 5, that is, every 2 or 5 evolutions in time

the pattern will be repeated but a few cells moved to the left or right. These patterns

can be rotated in the same way, so we can start with any of the 5 evolutions that are



Caṕıtulo 4. Rule 126 with memory of 4 generations 59

Figura 4.1: Rule 126 with memory of 4 generations with a central living cell

repeated over time. To have control over these patterns, you must specify at least

4 evolutions that generate these patterns, so that in the 5th evolution you begin to

use the memory and the glider is not destroyed.

As the 126 rule with memory is an extension of the elementary, all the periodic

funds that are found, the gliders and filters, also apply for the rule without memory.

This allows us to observe patterns that if we tried to see them only using the rule

without memory we would never see them or it would be very difficult, that is why



Caṕıtulo 4. Rule 126 with memory of 4 generations 60

Figura 4.2: Rule 126 with memory of 4 generations with a random condition

it is important to study them with memory.

There is a reverse procedure to pass a function with memory to one without

memory and this is to extend the ring until no combination has different states in

its next evolution, this allows us to transfer this function to one without memory for

analysis. The 126 rules with memory of 2 generations generates the same pattern as

that of no memory, but from 3 cells it is almost impossible to determine the function

without memory because even extending the ring to a radius of 35, the ambiguity



Caṕıtulo 4. Rule 126 with memory of 4 generations 61

remains unaffected and this already generates 235 possible combinations, which can

be programmed next to the 23 Wolfram combinations really is inefficient to continue

treating the automaton with its memory function.

4.4. Elements within the evolution space

Within the evolution space of rule 126 with memory, we find some elements that

seem to repeat themselves over time and observe how they move and maintain their

structure, as well as the background in which they travel.

Within this type of structure, we find 4 types within the rule 126, which are:

1. Tile for filtering: They are a set of cells that look like a mosaic that re-

peats infinitely, but allow the existence of gliders, gliders-gun and stationary

structures, with the tile for filtering the gliders that exist maintain their shape

thanks to that they are inside the background, outside his structure would not

be maintained. Within rule 126 we find 2 tiles for filtering.

2. Glider: This type of structure is characterized by being a set of cells that seem

to move either to the left or to the right and maintain their shape. Within rule

126 we find 2 different gliders.

3. Glider-gun: They are a set of cells that seem to “shoot” gliders, we can also

know them as generators of gliders. Within rule 126 we find a glider-gun.

4. Still-life: Still-life are similar to gliders, except that with the difference that

they do not move to the left or to the right, they remain in the same position.

Within rule 126 we find two still-life

In the following sections, these structures will be described and displayed within

the evolutions space of rule 126 with memory, as well as some properties they possess.

4.4.1. Tiles for filtering

The tiles for filtering are ”mosaics”that allow the existence of gliders, gliders-gun

and stationary structures, allow them to maintain their shape and interact with each



Caṕıtulo 4. Rule 126 with memory of 4 generations 62

other, hence the importance of knowing the various periodical backgrounds that rule

126 has with memory . Within the evolution space we find two tiles for filtering that

allow the existence of gliders.

Tile for filtering 1

The 1st tile for filtering is the shown in figure 4.3

Figura 4.3: Tile for filtering 1(fp1) in the evolutionary space

As we can see, it looks like a mosaic filled with white rectangles that are separated

by black lines and also alternate in order. However, the mosaic that defines our

background is a T that is indicated in red.

The regular expression that defines the tile for filtering fp1 is the table 4.1.

Line Cells Phase

1001 4 1
11 2 2

Cuadro 4.1: Lines of cells to form the tile for filtering 1

Tile for filtering 2

The 2nd tile for filtering is the shown in figure 4.4

As we can see, it looks like a mosaic filled with T’s separated by white lines, this

background is a bit more complex than the periodic background 1, and each one has



Caṕıtulo 4. Rule 126 with memory of 4 generations 63

Figura 4.4: Tile for filtering 2(fp2) in the evolutionary space

its set of cells that form it. The mosaic that defines it is a rectangle of 3 cells wide

by 10 high, which is shown in red.

The regular expression that defines the tile for filtering fp2 is the table 4.2.



Caṕıtulo 4. Rule 126 with memory of 4 generations 64

Line Cells Phase

111 3 1
000 3 2
101 3 3
111 3 4
101 3 5
111 3 6
000 3 7
111 3 8
000 3 9
101 3 10

Cuadro 4.2: Cell lines to form the tile for filtering 2

4.4.2. Gliders

The gliders as we saw, are a set of cells that move in the space of evolutions and

maintain a form, can move either to the left or to the right and can encompass more

than one evolution, in this section we will present the two gliders found in rule 126

with memory. Each of the gliders will be labeled with a “g” followed by the glider

number.

Glider g1

The glider 1 can be seen in the figure 4.5.

Figura 4.5: Glider 1(g1) moving within the space of evolutions



Caṕıtulo 4. Rule 126 with memory of 4 generations 65

As we can see in the figure, glider 1 has 5 evolutions to be formed and also lives

within the periodic background 1. Let’s see now which cells form the glider in the

table 4.3

Line Cells Phase

111111 6 1
1000000001 10 2
11101111 8 3

110001 6 4
101101 6 5

Cuadro 4.3: Lines of cells to form the glider 1

Glider g2

The glider 2 can be seen in the figure 4.6.

Figura 4.6: Glider 2(g2) moving within the space of evolutions

As seen in the figure, the glider 2 is similar to glider 1, it seems as if it were its

mirror. This glider moves to the left and is also composed of 5 evolutions and lives

within the periodic background 1. Let’s see its table of properties.

Glider g3

The glider 3 can be seen in the figure 4.7.



Caṕıtulo 4. Rule 126 with memory of 4 generations 66

Line Cells Phase

111111 6 1
1000000001 10 2
11110111 8 3

100011 6 4
101101 6 5

Cuadro 4.4: Lines of cells to form the glider 2

Figura 4.7: Glider 3(g3) moving within the space of evolutions

As seen in the figure, the glider 3 coexists between the periodic funds 1 and 2,

so we can use it as a bridge between these two spaces. The regular expression that

defines it is described in the table 4.5

Glider g4

The glider 4 can be seen in the figure 4.8.

As seen in the figure, glider 4 coexists betweentiles for filtering 1 and 2, so we

can use it as a bridge between these two spaces. The regular expression that defines

it is described in the table 4.6

Glider g5

The glider 5 can be seen in the figure 4.9.



Caṕıtulo 4. Rule 126 with memory of 4 generations 67

Line Cells Phase

11111 5 1
100000 6 2
11101 5 3

11 2 4
101 3 5

Cuadro 4.5: Lines of cells to form the glider 3

Figura 4.8: Glider 4(g4) moving within the space of evolutions

Figura 4.9: Glider 5(g5) moving within the space of evolutions



Caṕıtulo 4. Rule 126 with memory of 4 generations 68

Line Cells Phase

11111 5 1
000001 6 2
10111 5 3
11 2 4
101 3 5

Cuadro 4.6: Cell lines to form the glider 4

As seen in the figure, the glider 5 coexists between the tiles for filtering 1 and 2,

so we can use it as a bridge between these two spaces. The regular expression that

defines it is described in the table 4.7

Line Cells Phase

1 1 1
0001 4 2
111 3 3
0001 4 4
101 3 5

Cuadro 4.7: Lines of cells to form the glider 5

Glider g6

The glider 6 can be seen in the figure 4.10.

As seen in the figure, glider 6 coexists between periodic funds 1 and 2, so we can

use it as a bridge between these two spaces. The regular expression that defines it is

described in the table 4.8



Caṕıtulo 4. Rule 126 with memory of 4 generations 69

Figura 4.10: Glider 6(g6) moving within the space of evolutions

Line Cells Phase

1 1 1
1000 4 2
111 3 3

1000 4 4
101 3 5

Cuadro 4.8: Lines of cells to form the glider 6

4.4.3. Still-life

Still-life are similar to gliders, with the difference that they do not move to one

side, but stay in one position and move exclusively to “down”. Within rule 126 with

memory we find two stationary structures that live in different periodic backgrounds.

Stationary structures will be denoted by an “s” followed by the structure number.

Still-life s1

The still-life 1 has the shape shown in the figure 4.11

As we can see, it is a very small structure that only occupies 2 evolutions and

does not move to any side, so we can describe the cells that compose it in the table

4.9



Caṕıtulo 4. Rule 126 with memory of 4 generations 70

Figura 4.11: Still-life (s1) moving within the space of evolutions

Line Cells Phase

1 1 1
101 3 2

Cuadro 4.9: Cell lines to form the still-life 1

Still-life s2

The still-life 2 has the form shown in figure 4.12

As we can see, this stationary structure lives in the periodic background 2, but in

some evolutions it seems that it disappears. The table that describes the cells that

form it is the table 4.10

As we can see in the table, this stationary structure is composed of 10 evolutions

and has 3 different phases, which are repeated as our stationary structure progresses.

4.4.4. Gliders-gun

The gliders-gun are ”triggers.of gliders, we can also understand them as generators

of gliders. They are observed in the space of evolutions generating gliders that move

in space. Within the 126 rule with memory we can observe a variety of gliders that

do not differ much in the gliders they generate, but in their structure to generate

them, so some of them will be described. From this moment to refer to a glider we

will do it with the word “gun” followed by the glider number.



Caṕıtulo 4. Rule 126 with memory of 4 generations 71

Figura 4.12: Still-life 2(s2) moving within the space of evolutions

Glider gun 1

The glider-gun 1 is shown in figure 4.13

As we can see, glider gun 1 generates gliders g1 and g2. We can see that within

this glider-gun, the generated gliders are separated by the periodic background 1,

and we can see that the distance between the gliders is minimal.

Glider gun 2

The glider-gun 2 is shown in figure 4.14

As we can see, the glider-gun 2 generates the gliders g1 and g2. Like the gun1,

this glider-gun also lives in the periodic background 1 but the distance between the

gliders is greater.



Caṕıtulo 4. Rule 126 with memory of 4 generations 72

Line Cells Phase

1 1 2 1
0000 4 2
1111 4 3
0000 4 4

0 5
1 1 2 6
0000 4 7

0 8
1 1 2 9

0 10

Cuadro 4.10: Cell lines to form the still-life 2

Figura 4.13: Glider-gun 1 (gun1) generating the gliders g1 and g2 within the space
of evolutions

4.5. Points of collision of the elements within the

space of evolutions

The Collision points are evolutions where a glider or a stationary structure collide

with each other in some evolution and generate a new pattern. Within the gliders of



Caṕıtulo 4. Rule 126 with memory of 4 generations 73

Figura 4.14: Glider-gun 2 (gun2) generating the gliders g1 and g2 within the space
of evolutions

rule 126 with memory we find that they vary in number of points depending on the

type of glider, the same happens with still-life. In this section the various points for

the gliders g1, g2 and the still-life s1 and s2 will be shown.

4.5.1. Collision points of the gliders

Points on the glider g1

The collision points of the glider g1 are those that are indicated with arrows in

the figure 4.15

As we can see, the glider g1 has 3 collision points, which we can vary by rotating

it in its 5 different phases.

Points on the glider g2

The collision points of the glider g2 are those that are indicated with arrows in

the figure 4.16

As we can see, the glider g2 has 3 collision points, which we can vary by rotating

it in its 5 different phases.



Caṕıtulo 4. Rule 126 with memory of 4 generations 74

Figura 4.15: The collision points of the glider g1 in the space of evolutions

Figura 4.16: The collision points of the glider g2 in the space of evolutions

Points on the glider g3

The collision points of the glider g3 are those that are indicated with arrows in

the figure 4.17

As we can see, the glider g3 has only one collision point.



Caṕıtulo 4. Rule 126 with memory of 4 generations 75

Figura 4.17: The collision points of the glider g3 in the space of evolutions

Points on the glider g4

The collision points of the glider g4 are those that are indicated with arrows in

the figure 4.18

Figura 4.18: The collision points of the glider g4 in the space of evolutions

As we can see, the glider g4 has only one collision point.



Caṕıtulo 4. Rule 126 with memory of 4 generations 76

Points on the glider g5

The collision points of the glider g5 are those that are indicated with arrows in

the figure 4.19

Figura 4.19: The collision points of the glider g5 in the space of evolutions

As we can see, the glider g5 has 3 collision points, which we can vary by rotating

it in its 5 different phases.

Puntos en el glider g6

The collision points of the glider g6 are those that are indicated with arrows in

the figure 4.20

As we can see, the glider g6 has 3 collision points, which we can vary by rotating

it in its 5 different phases.



Caṕıtulo 4. Rule 126 with memory of 4 generations 77

Figura 4.20: The collision points of the glider g6 in the space of evolutions

4.5.2. Collision points of the still-life

Points in the still-life s1

The still-life s1 has the collision points indicated with arrows in the figure 4.21

Figura 4.21: Collision points of the still-life s1 in the space of evolutions

As we can see in the figure 4.21, this still-life s1 has two collision points on the



Caṕıtulo 4. Rule 126 with memory of 4 generations 78

sides.

Points in the still-life s2

The still-life s2 has the collision points indicated with arrows in the figure 4.22

Figura 4.22: Collision points of the still-life s2 in the space of evolutions

As we can see in the figure 4.22, this still-life s2 has 14 collision points, 7 on each

side.



Caṕıtulo 4. Rule 126 with memory of 4 generations 79

4.6. Collisions between the elements within the

evolution space

In this section we will summarize the different collisions obtained with the identi-

fied structures within the evolution space, to see all the collisions carried out exhaus-

tively see the appendix B. These collisions were classified according to the number of

particles that intervened in the collision, being those of two particles binary collisions,

those of three ternary particles and so on.

To understand the result generated by the collisions, we will use a notation in

the form of an equation in the following way:

g1 ↔ s2 ↔ g3 ↔ ...↔ gn ↔ sn = K

Where:

1. gn will denote the glider with its respective number.

2. sn will denote the still-life with its respective number.

3. K will denote a combination of gliders, tiles for filtering, etc, depending on the

result of the collision. K can own particles separated by:

Raised to some power: It indicates that they are equal particles and

that they are not separated, the number of the power indicates the amount

of particles that are together. Examples: g2
1, g4

3, etc.

Multiplied: For equal particles it indicates that they are separated by a

tile for filtering, the number that comes with them indicates the quantity

of particles. For different particles it indicates that they are stuck together.

Examples: g1g2, 2g1, etc.

Sign of +: For equal particles it indicates that they are separated by

more than one tile for filtering. For different particles it indicates that

they are separated by one or more tiles for filtering. Examples: g1 + g1,

g3 + g4, etc.



Caṕıtulo 4. Rule 126 with memory of 4 generations 80

4.6.1. Binary collisions

We will begin with collisions that only involve two elements within the space of

evolutions: the Binary collisions.

Gliders: g1 and g2

In the figure 4.23 we can observe the collisions obtained with the gliders g1 y g2

respectively, below each image is the equation that describes them.

Figura 4.23: The different results obtained from colliding g1 and g2 with its respective
equation

In the figure 4.23 we can observe 5 different collisions that produce different



Caṕıtulo 4. Rule 126 with memory of 4 generations 81

results, the equations indicated are:

1. g1 ↔ g2 = ∅

2. g1 ↔ g2 = g1

3. g1 ↔ g2 = g2

4. g1 ↔ g2 = g3 + g5

5. g1 ↔ g2 = g6 + g4

Gliders: g1 and g6

In the figure 4.24 we can observe the collisions obtained with the gliders g1 y g6

respectively, below each image is the equation that describes them.

In the figure 4.24 we can observe 5 different collisions that produce different

results, the only collision that produces g6 again it is indicated twice because on one

occasion it arrives with a delay, while on the other it continues its way normally. The

equations indicated are:

1. g1 ↔ g6 = g6 − with− delay

2. g1 ↔ g6 = g2
3

3. g1 ↔ g6 = g6

4. g1 ↔ g6 = g2 + g6 + g5 + g3

5. g1 ↔ g6 = g6 + g5 + g3

Gliders: g1 and s1

In the figure 4.25 we can observe the collision obtained with the glider g1 and the

still-life s1 respectively.

In the figure 4.25 we can see that the collision obtained is simply that the still-life

s1 is maintained while the glider g1 seems that it is destroyed, so we rotate the glider

we will obtain the same result, so the list of collisions is simply this:

1. g1 ↔ s1 = s1



Caṕıtulo 4. Rule 126 with memory of 4 generations 82

Figura 4.24: The different results obtained from colliding g1 and g6 with its respective
equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 83

Figura 4.25: The collision obtained between g1 and s1

Gliders: g3 and g4

In the figure 4.26 we can observe the collision obtained with the glider g3 and the

glider g4 respectively.

In the figure 4.26 we can see that the collision obtained generates a new particle

that did not even participate in the collision (s1). The equation that describes it is

the following:

1. g3 ↔ g4 = s1

Gliders: g3 and s2

In the figure 4.27 we can observe the collision obtained with the glider g3 y el

still-life s2 respectivamente.

In the figure 4.27 we can see that the collision obtained generates a new particle

that did not even participate in the collision (g6). The equation that describes it is

the following.

1. g3 ↔ s2 = g6



Caṕıtulo 4. Rule 126 with memory of 4 generations 84

Figura 4.26: The collision obtained between g3 and g4

Gliders: g5 and g2

In the figure 4.28 we can observe the collisions obtained with the glider g5 and

the glider g2 respectively.

As we can see in the figure 4.28, two collisions keep g5 but one causes a delay and

displaces it, while the other is not altered, the other collisions generate new particles.

The equations that define the collisions obtained are:

1. g5 ↔ g2 = g5 − with− delay

2. g5 ↔ g2 = g5

3. g5 ↔ g2 = g6 + g5

4. g5 ↔ g2 = g4 + g6 + g5 + g1

5. g5 ↔ g2 = g2
3



Caṕıtulo 4. Rule 126 with memory of 4 generations 85

Figura 4.27: The collision obtained between g3 and s2



Caṕıtulo 4. Rule 126 with memory of 4 generations 86

Figura 4.28: The collision obtained between g5 and g2



Caṕıtulo 4. Rule 126 with memory of 4 generations 87

Gliders: g5 and g6

In the figure 4.29 we can observe the collisions obtained with the glider g5 and

the glider g6 respectively.

Figura 4.29: The collision obtained between g5 and g6

As we can see in the figure 4.29, we get a glider-gun from the collisions, this

facilitates its creation. The equations that define the collisions obtained are:

1. g5 ↔ g6 = gun3

2. g5 ↔ g6 = s2



Caṕıtulo 4. Rule 126 with memory of 4 generations 88

3. g5 ↔ g6 = gun4

4. g5 ↔ g6 = g5g3

5. g5 ↔ g6 = g4g6

Gliders: g5 and s1

In the figure 4.30 we can observe the collision obtained with the glider g5 and the

still-life s1 respectively.

Figura 4.30: The collision obtained between g5 and s1

As we can see in the figure 4.30, it seems that the glider bounces, causing it to

mutate g4, the equation that defines the interaction is the following:

1. g5 ↔ s1 = g4

Gliders: s1 and g2

In the figure 4.31 we can observe the collision obtained with the still-life s1 and

the glider g2 respectively.



Caṕıtulo 4. Rule 126 with memory of 4 generations 89

Figura 4.31: The collision obtained between s1 and g2

As we can see in the figure 4.31, absorbs the glider and continues s1 a little

displaced. The equation that defines the interaction is the following:

1. s1 ↔ g2 = s1

Gliders: s1 and g6

In the figure 4.32 we can observe the collision obtained with the still-life s1 and

the glider g6 respectively.

As we can see in the figure 4.32, it bounces off the glider and mutates to g3. The

equation that defines the interaction is the following:

1. s1 ↔ g6 = g3

Gliders: s2 and g4

In the figure 4.33 we can observe the collision obtained with the still-life s2 and

the glider g4 respectively.



Caṕıtulo 4. Rule 126 with memory of 4 generations 90

Figura 4.32: The collision obtained between s1 and g6



Caṕıtulo 4. Rule 126 with memory of 4 generations 91

Figura 4.33: The collision obtained between s2 and g4



Caṕıtulo 4. Rule 126 with memory of 4 generations 92

As we can see in the figure 4.33, it bounces off the glider and mutates to g5. The

equation that defines the interaction is the following:

1. s2 ↔ g4 = g5

Summary of binary collisions

In the table 4.11, all the equations of the collisions that we exemplify are sum-

marized. In total there are 165 possible binary collisions, this was calculated using

set theory (more details in the appendix B).

Equation Result

g1 ↔ g2 ∅
g1 ↔ g2 g1

g1 ↔ g2 g2

g1 ↔ g2 g3 + g5

g1 ↔ g2 g6 + g4

g1 ↔ g6 g6 − with− delay
g1 ↔ g6 g2

3

g1 ↔ g6 g6

g1 ↔ g6 g2 + g6 + g5 + g3

g1 ↔ g6 g6 + g5 + g3

g1 ↔ s1 s1

g3 ↔ g4 s1

g3 ↔ s2 g6

g5 ↔ g2 g5 − with− delay
g5 ↔ g2 g5

g5 ↔ g2 g6 + g5

g5 ↔ g2 g4 + g6 + g5 + g1

g5 ↔ g2 g2
3

g5 ↔ g6 gun3

g5 ↔ g6 s2

g5 ↔ g6 gun4

Continued on the next page



Caṕıtulo 4. Rule 126 with memory of 4 generations 93

Cuadro 4.11 – Continued from previous page

Equation Result

g5 ↔ g6 g5g3

g5 ↔ g6 g4g6

g5 ↔ s1 g4

s1 ↔ g2 s1

s1 ↔ g6 g3

s2 ↔ g4 g5

Cuadro 4.11: Summary table of binary collisions

4.6.2. Ternary collisions

In this section we will describe the collisions that involve 3 structures within the

evolutions space: Ternary collisions.

Gliders: 2g1 and g2

In the figure 4.34 we can observe the collisions obtained with the gliders 2g1 y g2

respectively, below each image is the equation that describes them.

In the figure 4.34 we can observe 5 different collisions that produce different

results, the equations indicated are:

1. 2g1 ↔ g2 = 2g1

2. 2g1 ↔ g2 = g3 + g5

3. 2g1 ↔ g2 = g6 + g4

4. 2g1 ↔ g2 = g6 + g4

5. 2g1 ↔ g2 = g1



Caṕıtulo 4. Rule 126 with memory of 4 generations 94

Figura 4.34: The different results obtained from colliding 2g1 and g2 with its respec-
tive equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 95

Figura 4.35: The different results obtained from colliding 2g1 and g6 with its respec-
tive equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 96

Gliders: 2g1 and g6

In the figure 4.35 we can observe the collisions obtained with the gliders 2g1 y g6

respectively, below each image is the equation that describes them.

In the figure 4.35 we can observe 5 different collisions that produce different

results, the equations indicated are:

1. 2g1 ↔ g6 = g1 + g2
3

2. 2g1 ↔ g6 = gun

3. 2g1 ↔ g6 = g6 + g5 + g3

4. 2g1 ↔ g6 = g6 + g5 + g3

5. 2g1 ↔ g6 = g6

Gliders: 2g1 and s1

In the figure 4.36 we can observe the collisions obtained with the gliders 2g1 and

the still-life s1 respectively, below each image is the equation that describes them.

In the figure 4.36 we can only observe a different collision, which equation is:

1. 2g1 ↔ s1 = s1

Gliders: g1 + g1 and g2

In the figure 4.37 we can observe the collisions obtained with the gliders g1 + g1

y g2 respectively, below each image is the equation that describes them.

In the figure 4.37 we can observe 5 different collisions that produce different

results, the equations indicated are:

1. g1 + g1 ↔ g2 = ∅

2. g1 + g1 ↔ g2 = g1

3. g1 + g1 ↔ g2 = g1 + g1

4. g1 + g1 ↔ g2 = g3 + g5

5. g1 + g1 ↔ g2 = g2



Caṕıtulo 4. Rule 126 with memory of 4 generations 97

Figura 4.36: The different results obtained from colliding 2g1 and s1 with its respec-
tive equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 98

Figura 4.37: The different results obtained from colliding g1 + g1 and g2 with its
respective equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 99

Gliders: g1 + g1 and g6

In the figure 4.38 we can observe the collisions obtained with the gliders g1 + g1

y g6 respectively, below each image is the equation that describes them.

Figura 4.38: The different results obtained from colliding g1 + g1 and g6 with its
respective equation

In the figure 4.38 we can observe 5 different collisions that produce different

results, the equations indicated are:

1. g1 + g1 ↔ g6 = g6

2. g1 + g1 ↔ g6 = g2
3

3. g1 + g1 ↔ g6 = g1 + g2
3



Caṕıtulo 4. Rule 126 with memory of 4 generations 100

4. g1 + g1 ↔ g6 = gun

5. g1 + g1 ↔ g6 = g6 + g5 + g3

Gliders: g1 + g1 and s1

In the figure 4.39 we can observe the collisions obtained with the gliders g1 + g1

and the still-life s1 respectively, below each image is the equation that describes

them.

Figura 4.39: The different results obtained from colliding g1 + g1 and s1 with its
respective equation

In the figure 4.39 we can only observe a different collision, which equation is:

1. g1 + g1 ↔ s1 = s1

Gliders: g1 and 2g2

In the figure 4.40 we can observe the collisions obtained with the gliders g1 y 2g2

respectively, below each image is the equation that describes them.

In the figure 4.40 we can observe 5 different collisions that produce different

results, the equations indicated are:



Caṕıtulo 4. Rule 126 with memory of 4 generations 101

Figura 4.40: The different results obtained from colliding g1 and 2g2 with its respec-
tive equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 102

1. g1 ↔ 2g2 = g2

2. g1 ↔ 2g2 = g3 + g5

3. g1 ↔ 2g2 = g3 + g5

4. g1 ↔ 2g2 = g6 + g4

5. g1 ↔ 2g2 = 2g2

Gliders: g1 and 2s1

In the figure 4.41 we can observe the collisions obtained with the gliders g1 and

the still-life 2s1 respectively, below each image is the equation that describes them.

Figura 4.41: The different results obtained from colliding g1 and 2s1 with its respec-
tive equation

In the figure 4.41 we can only observe a different collision, which equation is:

1. g1 ↔ 2s1 = s1 + s1



Caṕıtulo 4. Rule 126 with memory of 4 generations 103

Gliders: g1 and g2 + g2

In the figure 4.42 we can observe the collisions obtained with the gliders g1 and

g2 + g2 respectively, below each image is the equation that describes them.

Figura 4.42: The different results obtained from colliding g1 and g2 + g2 with its
respective equation

In the figure 4.42 we can observe 5 different collisions that produce different

results, the equations indicated are:

1. g1 ↔ g2 + g2 = g2

2. g1 ↔ g2 + g2 = ∅



Caṕıtulo 4. Rule 126 with memory of 4 generations 104

3. g1 ↔ g2 + g2 = g1

4. g1 ↔ g2 + g2 = g6 + g4

5. g1 ↔ g2 + g2 = g2 + g2

Gliders: g1 and g2
2

In the figure 4.43 we can observe the collisions obtained with the gliders g1 y g2
2

respectively, below each image is the equation that describes them.

Figura 4.43: The different results obtained from colliding g1 and g2
2 with its respective

equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 105

In the figure 4.43 we can observe 5 different collisions that produce different

results, the equations indicated are:

1. g1 ↔ g2
2 = g2

2. g1 ↔ g2
2 = g2

3. g1 ↔ g2
2 = g1

4. g1 ↔ g2
2 = g6 + g4

5. g1 ↔ g2
2 = g2

2

Gliders: g1 and g6 + g4

In the figure 4.44 we can observe the collisions obtained with the gliders g1 and

g6 + g4 respectively, below each image is the equation that describes them.

In the figure 4.44 we can observe 5 different collisions that produce different

results, the equations indicated are:

1. g1 ↔ g6 + g4 = g6g4

2. g1 ↔ g6 + g4 = g1

3. g1 ↔ g6 + g4 = g6 + g4

4. g1 ↔ g6 + g4 = gun

5. g1 ↔ g6 + g4 = g6 + g4

Gliders: g1 and g2
6

In the figure 4.45 we can observe the collisions obtained with the gliders g1 y g2
6

respectively, below each image is the equation that describes them.

In the figure 4.45 we can observe 5 different collisions that produce different

results, the equations indicated are:

1. g1 ↔ g2
6 = g6 + s2



Caṕıtulo 4. Rule 126 with memory of 4 generations 106

Figura 4.44: The different results obtained from colliding g1 and g6 + g4 with its
respective equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 107

Figura 4.45: The different results obtained from colliding g1 and g2
6 with its respective

equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 108

2. g1 ↔ g2
6 = g6 + s2 + g5 + g3

3. g1 ↔ g2
6 = g6 + s2 + g5g3

4. g1 ↔ g2
6 = gun

5. g1 ↔ g2
6 = g2

6

Gliders: g1 and g6g4

In the figure 4.46 we can observe the collisions obtained with the gliders g1 and

g6g4 respectively, below each image is the equation that describes them.

In the figure 4.46 we can observe 10 different collisions that produce different

results, the equations indicated are:

1. g1 ↔ g6g4 = g2

2. g1 ↔ g6g4 = g6 + g5

3. g1 ↔ g6g4 = g6g4

4. g1 ↔ g6g4 = g1

5. g1 ↔ g6g4 = g6g4

6. g1 ↔ g6g4 = g2 + g6 + g5 + g1

7. g1 ↔ g6g4 = g6 + g5

8. g1 ↔ g6g4 = g6 + g4

9. g1 ↔ g6g4 = gun

10. g1 ↔ g6g4 = gun

Gliders: g1, s1 and g2

In the figure 4.47 we can observe the collisions obtained using g1, s1 and g2

respectively, below each image is the equation that describes them.

In the figure 4.47 we can only observe a different collision, which equation is:

1. g1 ↔ s1 ↔ g2 = s1



Caṕıtulo 4. Rule 126 with memory of 4 generations 109

g1 ↔ g6g4 = g2 g1 ↔ g6g4 = g6 + g5 g1 ↔ g6g4 = g6g4 g1 ↔ g6g4 = g1

g1 ↔ g6g4 = g2 + g6 + g5 + g1g1 ↔ g6g4 = g6g4 g1 ↔ g6g4 = g6 + g5 g1 ↔ g6g4 = g6 + g4

g1 ↔ g6g4 = gun g1 ↔ g6g4 = gun

Figura 4.46: The different results obtained from colliding g1 and g6g4 with its res-
pective equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 110

Figura 4.47: The different results obtained from colliding g1, s1 and g2 with its
respective equation



Cap��tulo 4. Rule 126 with memory of 4 generations 111

Gliders: g1, s1 and g6

In the �gure 4.48 we can observe the collisions obtained usingg1, s1 and g6

respectively, below each image is the equation that describes them.

Figura 4.48: The di�erent results obtained from colliding g1, s1 and g6 with its
respective equation

In the �gure 4.48 we can observe two di�erent collisions, whose equations are:

1. g1 $ s1 $ g6 = g3

2. g1 $ s1 $ g6 = g1 + g3

Gliders: g2
1 and g2

In the �gure 4.49 we can observe the collisions obtained usingg2
1 and g2 respec-

tively, below each image is the equation that describes them.

In the �gure 4.49 we can observe 5 di�erent collisions that produce di�erent

results, the equations indicated are:

1. g2
1 $ g2 = g2

2. g2
1 $ g2 = g1

























Caṕıtulo 4. Rule 126 with memory of 4 generations 123

Figura 4.61: The different results obtained from colliding g2
3 and s2 with its respective

equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 124

Gliders: g5 and 2g2

In the figure 4.62 we can observe the collisions obtained using g5 and 2g2 respec-

tively, below each image is the equation that describes them.

Figura 4.62: The different results obtained from colliding g5 and 2g2 with its respec-
tive equation

In the figure 4.62 we can observe 5 different equations, which are:

1. g5 ↔ 2g2 = g5

2. g5 ↔ 2g2 = g4 + g6 + g5

3. g5 ↔ 2g2 = g4 + g6 + g5

4. g5 ↔ 2g2 = gun

5. g5 ↔ 2g2 = g2
4 + g2



Caṕıtulo 4. Rule 126 with memory of 4 generations 125

Gliders: g5 and 2s1

In the figure 4.63 we can observe the collisions obtained using g5 and 2s1 respec-

tively, below each image is the equation that describes them.

Figura 4.63: The different results obtained from colliding g5 and 2s1 with its respec-
tive equation

In the figure 4.63 we can observe a different equation, which is:

1. g5 ↔ 2s1 = s1

Gliders: g5, g2 and g2

In the figure 4.64 we can observe the collisions obtained using g5 and g2 + g2

respectively, below each image is the equation that describes them.

In the figure 4.64 we can observe 5 different equations, which are:

1. g5 ↔ g2 + g2 = g2
4



Caṕıtulo 4. Rule 126 with memory of 4 generations 126

Figura 4.64: The different results obtained from colliding g5 and g2 + g2 with its
respective equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 127

2. g5 ↔ g2 + g2 = g5

3. g5 ↔ g2 + g2 = g4 + g6 + g5

4. g5 ↔ g2 + g2 = gun

5. g5 ↔ g2 + g2 = g2
4 + g2

Gliders: g5 and g2
2

In the figure 4.65 we can observe the collisions obtained using g5 and g2
2 respec-

tively, below each image is the equation that describes them.

Figura 4.65: The different results obtained from colliding g5 and g2
2 with its respective

equation

In the figure 4.65 we can observe 5 different equations, which are:



Caṕıtulo 4. Rule 126 with memory of 4 generations 128

1. g5 ↔ g2
2 = g2

4g2

2. g5 ↔ g2
2 = g2

4

3. g5 ↔ g2
2 = g4 + g6 + g5

4. g5 ↔ g2
2 = gun

5. g5 ↔ g2
2 = g4 + g6 + g5 + g1

Gliders: g5 and g6 + g4

In the figure 4.66 we can observe the collisions obtained using g5 and g6 + g4

respectively, below each image is the equation that describes them.

In the figure 4.66 we can observe 5 different equations, which are:

1. g5 ↔ g6 + g4 = g5

2. g5 ↔ g6 + g4 = g5

3. g5 ↔ g6 + g4 = g4g6 + g4

4. g5 ↔ g6 + g4 = chaos

5. g5 ↔ g6 + g4 = gun

Gliders: g5 and g2
6

In the figure 4.67 we can observe the collisions obtained using g5 and g2
6 respec-

tively, below each image is the equation that describes them.

In the figure 4.67 we can observe 5 different equations, which are:

1. g5 ↔ g2
6 = g4g6 + s2

2. g5 ↔ g2
6 = g4 + g6 + 2s2 + g5 + g1g3

3. g5 ↔ g2
6 = g4g

2
6

4. g5 ↔ g2
6 = g4 + g6 + 2s2 + g5 + g3

5. g5 ↔ g2
6 = g4 + g2 + g6 + 2s2 + g5 + g1 + g3



Caṕıtulo 4. Rule 126 with memory of 4 generations 129

Figura 4.66: The different results obtained from colliding g5 and g6 + g4 with its
respective equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 130

Figura 4.67: The different results obtained from colliding g5 and g2
6 with its respective

equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 131

Gliders: g5 and g6g4

In the figure 4.68 we can observe the collisions obtained using g5 and g6g4 res-

pectively, below each image is the equation that describes them.

In the figure 4.68 we can observe 10 different equations, which are:

1. g5 ↔ g6g4 = gun

2. g5 ↔ g6g4 = gun

3. g5 ↔ g6g4 = g3
4

4. g5 ↔ g6g4 = g6g4

5. g5 ↔ g6g4 = g4g6 + g5

6. g5 ↔ g6g4 = g5

7. g5 ↔ g6g4 = g5

8. g5 ↔ g6g4 = gun

9. g5 ↔ g6g4 = gun

10. g5 ↔ g6g4 = gun

Gliders: g5, s1 and g2

In the figure 4.69 we can observe the collisions obtained using g5, s1 and g2

respectively, below each image is the equation that describes them.

In the figure 4.69 we can observe 2 different equations, which are:

1. g5 ↔ s1 ↔ g2 = g4

2. g5 ↔ s1 ↔ g2 = g4g2



Caṕıtulo 4. Rule 126 with memory of 4 generations 132

g5 ↔ g6g4 = gun g5 ↔ g6g4 = gun g5 ↔ g6g4 = g34 g5 ↔ g6g4 = g6g4

g5 ↔ g6g4 = g4g6 + g5 g5 ↔ g6g4 = g5 g5 ↔ g6g4 = g5 g5 ↔ g6g4 = gun

g5 ↔ g6g4 = gun g5 ↔ g6g4 = gun

Figura 4.68: The different results obtained from colliding g5 and g6g4 with its res-
pective equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 133

Figura 4.69: The different results obtained from colliding g5, s1 and g2 with its
respective equation

Figura 4.70: The different results obtained from colliding g5 and s2
1 with its respective

equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 134

Gliders: g5 and s2
1

In the figure 4.70 we can observe the collisions obtained using g5 and s2
1 respec-

tively, below each image is the equation that describes them.

In the figure 4.70 we can observe a different equation, which is:

1. g5 ↔ s2
1 = g4 + s1

Gliders: g2
5 and g2

In the figure 4.71 we can observe the collisions obtained using g2
5 and g2 respec-

tively, below each image is the equation that describes them.

In the figure 4.71 we can observe 5 different equations, which are:

1. g2
5 ↔ g2 = s2 + g5

2. g2
5 ↔ g2 = g2

5

3. g2
5 ↔ g2 = g4g6 + s2 + g5

4. g2
5 ↔ g2 = g4 + g6 + s2 + g5

5. g2
5 ↔ g2 = gun

Gliders: g2
5 and g6

In the figure 4.72 we can observe the collisions obtained using g2
5 and g6 respec-

tively, below each image is the equation that describes them.

In the figure 4.72 we can observe 5 different equations, which are:

1. g2
5 ↔ g6 = g5g3

2. g2
5 ↔ g6 = g2

5g3

3. g2
5 ↔ g6 = g4g2 + g6 + 2s2 + g5 + g3

4. g2
5 ↔ g6 = g4 + g2 + g6 + 2s2 + g5 + g1 + g3

5. g2
5 ↔ g6 = g4 + g6 + 2s2 + g5 + g3



Caṕıtulo 4. Rule 126 with memory of 4 generations 135

Figura 4.71: The different results obtained from colliding g2
5 and g2 with its respective

equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 136

Figura 4.72: The different results obtained from colliding g2
5 and g6 with its respective

equation



Caṕıtulo 4. Rule 126 with memory of 4 generations 137

Gliders: g2
5 and s1

In the figure 4.73 we can observe the collisions obtained using g2
5 and s1 respec-

tively, below each image is the equation that describes them.

Figura 4.73: The different results obtained from colliding g2
5 and s1 with its respective

equation

In the figure 4.73 we can observe a different equation, which is:

1. g2
5 ↔ s1 = g5

Summary of ternary collisions

In the table 4.12 all the equations of the collisions that we exemplify are summa-

rized. In total there are 915 ternary collisions carried out, this was calculated using

what was obtained in the binary collisions and was reduced to a case study (more

details in the appendix B).



Caṕıtulo 4. Rule 126 with memory of 4 generations 138

Equation Result

2g1 ↔ g2 2g1

2g1 ↔ g2 g3 + g5

2g1 ↔ g2 g6 + g4

2g1 ↔ g2 g6 + g4

2g1 ↔ g2 g1

2g1 ↔ g6 g1 + g2
3

2g1 ↔ g6 gun

2g1 ↔ g6 g6 + g5 + g3

2g1 ↔ g6 g6 + g5 + g3

2g1 ↔ g6 g6

2g1 ↔ s1 s1

g1 + g1 ↔ g2 ∅
g1 + g1 ↔ g2 g1

g1 + g1 ↔ g2 g1 + g1

g1 + g1 ↔ g2 g3 + g5

g1 + g1 ↔ g2 g2

g1 + g1 ↔ g6 g6

g1 + g1 ↔ g6 g2
3

g1 + g1 ↔ g6 g1 + g2
3

g1 + g1 ↔ g6 gun

g1 + g1 ↔ g6 g6 + g5 + g3

g1 + g1 ↔ s1 s1

g1 ↔ 2g2 g2

g1 ↔ 2g2 g3 + g5

g1 ↔ 2g2 g3 + g5

g1 ↔ 2g2 g6 + g4

g1 ↔ 2g2 2g2

g1 ↔ 2s1 s1 + s1

g1 ↔ g2 + g2 g2

g1 ↔ g2 + g2 ∅
Continued on the next page



Caṕıtulo 4. Rule 126 with memory of 4 generations 139

Cuadro 4.12 – Continued from previous page

Equation Result

g1 ↔ g2 + g2 g1

g1 ↔ g2 + g2 g6 + g4

g1 ↔ g2 + g2 g2 + g2

g1 ↔ g2
2 g2

g1 ↔ g2
2 g2

g1 ↔ g2
2 g1

g1 ↔ g2
2 g6 + g4

g1 ↔ g2
2 g2

2

g1 ↔ g6 + g4 g6g4

g1 ↔ g6 + g4 g1

g1 ↔ g6 + g4 g6 + g4

g1 ↔ g6 + g4 gun

g1 ↔ g6 + g4 g6 + g4

g1 ↔ g2
6 g6 + s2

g1 ↔ g2
6 g6 + s2 + g5 + g3

g1 ↔ g2
6 g6 + s2 + g5g3

g1 ↔ g2
6 gun

g1 ↔ g2
6 g2

6

g1 ↔ g6g4 g2

g1 ↔ g6g4 g6 + g5

g1 ↔ g6g4 g6g4

g1 ↔ g6g4 g1

g1 ↔ g6g4 g6g4

g1 ↔ g6g4 g2 + g6 + g5 + g1

g1 ↔ g6g4 g6 + g5

g1 ↔ g6g4 g6 + g4

g1 ↔ g6g4 gun

g1 ↔ g6g4 gun

g1 ↔ s1 ↔ g2 s1

Continued on the next page



Caṕıtulo 4. Rule 126 with memory of 4 generations 140

Cuadro 4.12 – Continued from previous page

Equation Result

g1 ↔ s1 ↔ g6 g3

g1 ↔ s1 ↔ g6 g1 + g3

g2
1 ↔ g2 g2

g2
1 ↔ g2 g1

g2
1 ↔ g2 g1

g2
1 ↔ g2 g2

1

g2
1 ↔ g2 g3 + g5

g2
1 ↔ g6 g6 + g5 + g3

g2
1 ↔ g6 g2

3

g2
1 ↔ g6 g2 + g6 + g5 + g3

g2
1 ↔ g6 g1g

2
3

g2
1 ↔ g6 gun

g2
1 ↔ s1 s1

g3 ↔ 2s2 g6 + s2

g3 ↔ g4 + g2 s1

g3 ↔ g4 + g6 g3

g3 ↔ g2
4 g2

g3 ↔ g4g2 s1

g3 ↔ s2 + s2 g6 + s2

g3 ↔ s2 ↔ g4 g6 + g4

g3 ↔ s2 ↔ g4 g2

g3 ↔ s2 ↔ g4 ∅
g3 ↔ s2 ↔ g4 g1

g3 ↔ s2 ↔ g4 g4 + g5

g3 ↔ s2
2 g6 + s2

g2
3 ↔ g4 g1

g2
3 ↔ s2 g6 + g5g3

g5 ↔ 2g2 g5

g5 ↔ 2g2 g4 + g6 + g5

Continued on the next page



Caṕıtulo 4. Rule 126 with memory of 4 generations 141

Cuadro 4.12 – Continued from previous page

Equation Result

g5 ↔ 2g2 g4 + g6 + g5

g5 ↔ 2g2 gun

g5 ↔ 2g2 g2
4 + g2

g5 ↔ 2s1 s1

g5 ↔ g2 + g2 g2
4

g5 ↔ g2 + g2 g5

g5 ↔ g2 + g2 g4 + g6 + g5

g5 ↔ g2 + g2 gun

g5 ↔ g2 + g2 g2
4 + g2

g5 ↔ g2
2 g2

4g2

g5 ↔ g2
2 g2

4

g5 ↔ g2
2 g4 + g6 + g5

g5 ↔ g2
2 gun

g5 ↔ g2
2 g4 + g6 + g5 + g1

g5 ↔ g6 + g4 g5

g5 ↔ g6 + g4 g5

g5 ↔ g6 + g4 g4g6 + g4

g5 ↔ g6 + g4 chaos

g5 ↔ g6 + g4 gun

g5 ↔ g2
6 g4g6 + s2

g5 ↔ g2
6 g4 + g6 + 2s2 + g5 + g1g3

g5 ↔ g2
6 g4g

2
6

g5 ↔ g2
6 g4 + g6 + 2s2 + g5 + g3

g5 ↔ g2
6 g4 + g2 + g6 + 2s2 + g5 + g1 + g3

g5 ↔ g6g4 gun

g5 ↔ g6g4 gun

g5 ↔ g6g4 g3
4

g5 ↔ g6g4 g6g4

g5 ↔ g6g4 g4g6 + g5

Continued on the next page



Caṕıtulo 4. Rule 126 with memory of 4 generations 142

Cuadro 4.12 – Continued from previous page

Equation Result

g5 ↔ g6g4 g5

g5 ↔ g6g4 g5

g5 ↔ g6g4 gun

g5 ↔ g6g4 gun

g5 ↔ g6g4 gun

g5 ↔ s1 ↔ g2 g4

g5 ↔ s1 ↔ g2 g4g2

g5 ↔ s2
1 g4 + s1

g2
5 ↔ g2 s2 + g5

g2
5 ↔ g2 g2

5

g2
5 ↔ g2 g4g6 + s2 + g5

g2
5 ↔ g2 g4 + g6 + s2 + g5

g2
5 ↔ g2 gun

g2
5 ↔ g6 g5g3

g2
5 ↔ g6 g2

5g3

g2
5 ↔ g6 g4g2 + g6 + 2s2 + g5 + g3

g2
5 ↔ g6 g4 + g2 + g6 + 2s2 + g5 + g1 + g3

g2
5 ↔ g6 g4 + g6 + 2s2 + g5 + g3

g2
5 ↔ s1 g5

Cuadro 4.12: Summary table of ternary collisions

4.6.3. Colisiones de orden superior

In this section we will illustrate some collisions that were made using 4 and

5 particles within the space of evolutions, considered as quaternary and quinary

respectively. These collisions were made to illustrate some interesting collisions, as

well as show that more particles, more collisions are required, so we face a problem

of infinity and not decidable.



Caṕıtulo 4. Rule 126 with memory of 4 generations 143

Quaternary collisions

In the figure 4.74 we can observe some interesting quaternary collisions, which

mostly generate glider-gun.

g1g3 ↔ g24 = g1 g23 ↔ g4g2 = g2

g23 ↔ g24 = gun g3g5 ↔ g6g4 = gun

g3g5 ↔ g6g4 = gun

g3g5 ↔ g6g4 = gun

g3g5 ↔ g6g4 = gun g3g5 ↔ g6g4 = gun

Figura 4.74: Some results of colliding 4 particles within the evolution space



Caṕıtulo 5

Collision-based computing

5.1. Background

To carry out any operation with the computer, programmers, developers, resear-

chers, etc., use the basic units known as bits (0 and 1), which when evaluated within

logical gates like AND, OR, XOR, etc, and uniting many of these, we can compute

from a sum to a program that allows us to analyze a DNA chain.

Now we will try to do computing in a non-structured environment populated by

moving objects, without cables, without valves, there is nothing there: only compact

patterns deanbulating in space, colliding with each other and calculating.

A computer device should be general purpose, universal, or specialized. A uni-

versal processor can be almost everything; specialized - almost nothing. Personal

computers are universal, the controllers of a microwave are specialized. One could

study two types of universality - logical, or computational, and simulational. An

abstract machine as well as a real physical, chemical or bologic system, is called

computationally universal if it implements a functionally complete, or universal, set

of Boolean functions in its space-time dynamics. The constructions mostly studied

within the collision-based computation are computationally universal, because they

carry out universal systems of logic gates in hierarchical collisions of moving objects.

If a system simulates the behavior of a universal machine, which its universality has

been proven, it is called simulationally universal.

A universal processing device can be either structured, heterogeneous, compart-

144



Caṕıtulo 5. Collision-based computing 145

mentalized and stationary or without structure, homogeneous, without architecture

and dynamic. Structured devices have wires to transmit information, and valves to

transmit it: devices without structure do not have any of that. The quanta of in-

formation are represented by moving objects (either by their presence / absence or

particular types, colors) that travel in space. The trajectories of the objects can be

seen as the wires. Objects change their trajectories or states when they collide with

other objects. Thus, information is transformed and computing can be implemented.

There are quite a few sources for collision-based computation. Studies that deal

with signal collisions, journeys along discrete chains, cellular automata of one di-

mension, lie at the beginning of the field. The ideas of colliding signals, which have

existed since the 19th century in physics and physiology, have been placed in the fra-

mework of automata recently, about 1965, when articles by A. J. Atrubin, P. Fisher

and A. Waksman were published. It is known that Atrubin studied multiplication in

one-dimensional cellular automata; Waksman gave a solution of 8 states for the pro-

blem of synchronization of a firing squad; and Fisher showed how to generate prime

numbers in cellular automata. The approach of Atrubin-Fisher-Waksman allowed

the development of unimaginable constructions aimed at increasing the computing

potential of networks of homogeneous automata.

In 1971 E. R. Banks showed how to construct simple wires and gates in configu-

rations of a two-dimensional binary state cellular automaton. This was construction

based on architecture. Thus, a wire was represented by a particular stationary confi-

guration of cell states; this was rather a simulation of an electrical circuit, or logical,

conventional. The design of Banks was removed from its heterogeneity ten years

later, when the Game of Life made our world “without wires”

In 1982 Elwyn Berlekamp, John Conway and Richard Gay proved that the Game

of Life can imitate computers. They imitated the electric cables with lines on which

the gliders travel, and demonstrated how to design a logic gate colliding gliders with

one to another. His “ways to win” brought us admirable computer designs that not

only look fresh twenty years later, but are still rediscovered again and again by the

game of Life enthusiasts around the network. Berlekamp, Conway and Gay used a

fade reaction of gliders - two gliders colliding a annihilating - to build a NOT gate.

They adopted Gosper’s “dining room” to collect garbage and to destroy the glider



Caṕıtulo 5. Collision-based computing 146

currents. They used combinations of glider-guns and dining rooms to implement

AND and OR gates, and changed from a stationary pattern (block) to a mobile

pattern (glider) when they designed auxiliary information storage.

“There is even the possibility that space-time is granular, composed of discrete

units, and that the universe, as Edward Fredkin of MIT and others have suggested, is

a cellular automaton run by a huge computer. If yes, what we call a motion could only

be a simulated motion. A moving particle at the last micro level can be essentially

the same as one of our gliders, apparently moving at the macro level, where currently

there is only an alteration of basic cell-space-time states in obedience to the transition

rules that have to be to be discovered yet.” - Berlekamp-Conway-Gay’s book ends.

His last words were about Fredkin.

Meanwhile, in 1978 Edward Fredkin and Tommaso Toffoli uploaded a proposal

for a one-year project to DARPA, which was funded, and thus began deploying a

chain of remarkable events. Originally, Fredkin and Toffoli directed “drastically re-

duce the fraction of energy that is dissipated in each computational step.” To design

a computer without dissipation, they constructed a new type of logical logic - conser-

vative logic - that preserves both “the physical quantities in which the digital signals

are encoded ” and “the information present at any time in a digital system” . They

further developed those ideas in the seminal article Çonservative Logic”published in

1982. Thus, the concept of ballistic computers emerged. The Fredkin-Toffoli model

of conservative computation - the billiard ball model - explores “elastic collisions

involving balls and fixed reflexors”. Generally, they proved that given a container

with balls we can do any kind of computation.

The billiard ball model was taken further when Norman Margolus invented an

implementation of a model cellular automaton. He published his result in 1984.

“Margolus’s” and “the billiard ball model’s cellular automata” are widely used today.

The story I told you is just one of many possible explanations about how the

field of collision-based computation emerged.



Caṕıtulo 5. Collision-based computing 147

5.2. Definition

After reporting the background that gave rise to the collision-based computation,

we could infer an initial definition of what this new computer model is and how it

works, writing that “Collision-based computing is a model that allows us to perform

operations similar to those of a computer using elements that when interacting bet-

ween them generate the bases to compute something”, is similar to our definition of

computing, with the great difference that now our basic unit of information They

will not be 0’s and 1’s, but they will be elements that will move through space.

These elements can be particles, billiard balls, marbles, electromagnetic waves,

etc., and our intuition of ‘0 and 1 ’could be handled as absence / presence, state e1

and e2, etc. This depends on the model and how we have defined it, the truth is that

there is no correct way to make computation based on collisions, but there are ways

that exploit more the computational capabilities of one system than another.

Thus, we can define the computation based on collisions in the following way:

It is a model that allows us to write algorithms that will work with basic units

called mobile elements, which depending on their status, or their absence or presence,

will determine their values equivalent to the binary system.

5.2.1. Main characteristics

Within the main characteristics of collision-based computation, we will mention

the most common within the models found in the literature:

1. It has a collision space: Although we have elements that exist within our

model and that interact with others, we need to define the physical space where

these interactions will happen, it could be a pool table or the computational

space of an ECA.

2. It has mobile elements: These mobile elements have their own characte-

ristics, and also their properties emerge when they collide with others, the

property they will share with others is that they must move.

3. It is possible to interact these elements: It will seem redundant, but we

could find elements that are isolated and that we can not interact, which is



Caṕıtulo 5. Collision-based computing 148

why this condition is important.

4. The result of the interactions exists: We could find the case that interac-

ting causes them to be destroyed, so if the collision between several elements

generates new ones, some are destroyed or simply bounce, this will allow us to

model.

5.2.2. Objectives

Collision-based computation can have different objectives depending on where it

is focused and what is to be resolved, but we can highlight the purpose for which

this new form of computing emerged:

“Design a more efficient, simple and creative way to perform computation through

interactions between elements within a space that exists in a complex system.”

From here we can derive other particular objectives:

1. Optimize the number of operations when implementing conservative compu-

tation.

2. Allow the existence of the reversible computation to show all the steps that

were followed to reach the result.

3. Optimize the way in which operations are performed by coding them in a

different way.

4. Mapping the model to a physical model that allows us to design optimal com-

puters and make better use of their resources.

5.3. Determining the computing power of a sys-

tem

To determine the computational power of a system it is necessary to model some

computation using the interactions between the elements that emerge from a complex

system, this can be done by equations of collisions or equivalences between them.

Once we have the model, depending on the quantity and type of operations that we



Caṕıtulo 5. Collision-based computing 149

can perform with it, it is the associated computing power. If we can make many logic

gates type AND and NOT, but with another model we can only make the NAND

and NOR, the second model would become more powerful because the NAND and

NOR gates are universal.

We will deal in depth with how the computing power of a system is determined

using two main parameters: the Chomsky Hierarchy and the Logic Gates.

5.3.1. Chomsky Hierarchy

The Chomsky hierarchy in a classification of formal grammars that generate

regular languages and allows us to identify which language and with which machine

we can recognize it. This consists of 4 numbered types from 0 to 3, where 0 is the

largest covering all the grammars, and contains 1, 2 and 3. Let’s see the hierarchy

graphically and then we will explain it one by one the types it has and its relation

to the determination of the computing power of a system. In the figure 5.1 we can

see an image with the 4 types of languages and the machine that recognizes them.

We can see that type 0 contains the rest of the languages, type 1 contains 2 and

3, 2 only 3, and 3 is the most basic. We will describe in detail each of these types:

1. Type 3: Known as regular languages, are those that can be expressed by a

regular expression and can be linear on the right or on the left. This language

recognizes sequences of symbols. They are recognized using finite automata,

whether deterministic or non-deterministic.

2. Type 2: Know as context-independent languages, they are sets of sequences

of symbols or phrases. These languages are recognized using stack automata.

3. Type 1: Known as context-dependent languages, they are sets of sets of symbol

sequences. They are recognized using linearly coupled automata.

4. Type 0: Known as recursive languages, it is the largest hierarchy according to

Chomsky and includes a set of formal objects of any computational complexity.

They are recognized using Turing machines.

Knowing this, imagine that we have a system that allows collisions, and these

can be modeled with equations, equivalences between states and between characters



Caṕıtulo 5. Collision-based computing 150

Figura 5.1: Chomsky Hierarchy



Caṕıtulo 5. Collision-based computing 151

of an alphabet, etc. To measure the computational power of such a system, a good

way is to start with Chomsky’s hierarchy in type 3 and see if we can simulate a

regular language using collisions, if we succeed we can move to type 2 and simulate

a free grammar of context, if so we can pass type 1 and so on until we reach type

0 (perhaps the most complex), and try to simulate a Turing machine, depending on

how far we can simulate, is the computing power we have found from our system.

5.3.2. Logic Gates

Logic gates are electronic circuits internally conformed by transistors that are in

special arrangements with which they give voltage signals as a result or a Boolean

output, this output can be a high voltage (eg 5V = 1 in binary), or a low voltage

(eg 0V = 0 in binary). With these logic gates we can compute everything we know,

in fact our processor is based on an array of transistors which has a lot of gates

and when receiving an instruction transforms it into voltage, passes it through the

transistors and returns the result.

For logic gates we can handle two types of logic:

1. Positive logic: This means that when it receives a signal in high it is activated,

representing a 1 in binary, and with a low it is deactivated, representing a 0 in

binary.

2. Negative logic: This is the opposite of the positive logic, when it receives a

low the signal is activated, represented with a binary 0 and with a high it is

deactivated, represented with a 1 in binary.

This logic can also be expressed through the boole algebra, which establishes the

rules for multiplication and sum of entries according to the gate that is being applied.

There are many logical gates, but the basic (or elementary) are the following:

AND Gate

This logic gate evaluates two input signals and as a result it throws a 1 if both

signals are high, otherwise it throws 0. In a simple way, taking the signals a and

b, we can say that we are going to do the comparison “a Y b”, or a multiplication

within the boolean algebra. The truth table of this gate is in the table 5.1.



Caṕıtulo 5. Collision-based computing 152

a b a AND b

0 0 0
0 1 0
1 0 0
1 1 1

Cuadro 5.1: AND gate truth table

OR Gate

This logic gate evaluates two input signals and as a result it throws a 1 if any of

the signals is high, otherwise it throws 0. Say it in a simple way, taking the signals a

y b, we can say that we are going to make the comparison “a O b”, or a sum within

the boolean algebra. The truth table of this gate is in the table 5.2.

a b a OR b

0 0 0
0 1 1
1 0 1
1 1 1

Cuadro 5.2: OR gate truth table

NOT Gate

This logic gate evaluates an input signal and as a result throws the complement

to 1 of the signal. Simply put, taking the signal a, we can say that we are going to

make the denial “NO a”, within the boolean algebra a line is placed on top of the

signal. The truth table of this gate is in the table 5.3.

a NOT a

0 1
1 0

Cuadro 5.3: NOT gate truth table



Caṕıtulo 5. Collision-based computing 153

NAND Gate

This logic gate is similar to the AND but denied, evaluates two input signals and

as a result throws a 1 if the signals are different from being high, otherwise throws

a 0. Simply put, taking the signals a y b, we can say that we are going to make the

comparison “NO a Y b”, or a sum within the boolean algebra and then the result to

apply a NOT. The truth table of this gate is in the table 5.4.

a b a OR b

0 0 1
0 1 1
1 0 1
1 1 0

Cuadro 5.4: NAND gate truth table

NOR Gate

This logic gate is similar to the OR but negated, evaluates two input signals

and as a result throws a 1 if both signals are low, otherwise it throws 0. Putting this

simple, taking the signals a y b, we can say that we are going to make the comparison

“NO a O b”, or a multiplication within the boolean algebra and then the result to

apply a NOT. The truth table of this gate is in the table 5.5.

a b a NOR b

0 0 1
0 1 0
1 0 0
1 1 0

Cuadro 5.5: NOR gate truth table

XOR Gate

This logic gate is similar to the OR but is known as exclusive OR, evaluates two

input signals and throws a 1 if both signals are different, otherwise it throws 0. Put



Caṕıtulo 5. Collision-based computing 154

simply, taking the signals a y b, we can say that we are going to make the comparison

“ (a O NO b) Y (NO a O b)”, or the sum of the multiplications of a with b denied

and vice versa. The truth table of this gate is in the table 5.6.

a b a XOR b

0 0 0
0 1 1
1 0 1
1 1 0

Cuadro 5.6: XOR gate truth table

XNOR Gate

This logic gate is similar to the OR but it is known as Exclusive OR denied,

evaluates two input signals and throws a 1 if both signals are equal, otherwise it

throws 0. Say it in a simple way, taking the signals a y b, we can say that we are

going to make the comparison “ NO a XOR b”, or the sum of the multiplications of

a with b and the denial of the other multiplication. The truth table of this gate is in

the table 5.7.

a b a XNOR b

0 0 1
0 1 0
1 0 0
1 1 1

Cuadro 5.7: XNOR gate truth table

IF Gate

This logical gateway seems to do no harm if we only see the logical part. If it

receives a 1 it throws a 1, and if it receives a 0 it throws a 0, but in reality it is a

current amplifier, it amplifies the impedance of our signal. The truth table of this

gate is in the table 5.8.



Caṕıtulo 5. Collision-based computing 155

a IF a

0 0
1 1

Cuadro 5.8: IF gate truth table

Finally, we can see all the logic gates graphically along with their equation ac-

cording to the boole algebra in the figure 5.2

Figura 5.2: The basic logic gates

The universality of logic gates

We have seen the basic logic gates, but why are they known as basic? There

are very many circuit arrangements that allow us to do more complex and more

interesting things like flip-flops, registers, barrel shifters, etc., but all these circuits,

however interesting they appear internally, have 3 of the logic gates described above:

AND, OR and NOT, and is that with them we can build all the logic that we

require to compute anything, even if we only take the NAND and NOR, we get

the same result since these two gates contain the NOT. These gates are known as

“universal”, and if a system has them, it can perform universal computation, or it

has an associated Turing machine.



Caṕıtulo 6

Constructions based on collisions

6.1. Objects of rule 126 with memory

So far we have seen collisions involving two or three particles within the space of

evolutions, these collisions allowed us to explore a bit the behavior of the rule. Ho-

wever, as it happens in our universe, although it is required to know the interaction

between two elements, our world works with thousands of particles, which together

generate more complex results and are what we perceive. In this section we will

describe some results generated by rule 126 with memory when we add many parti-

cles within the space of evolutions, which we will label according to their collective

behavior.

6.1.1. Eaters

They are structures that eat gliders. The eaters are usually also gliders that feed

on others, retain their shape but move some cells either to the left or to the right. In

the figure ref fig: eaters we can see some eaters that have the rule 126 with memory.

In the figure 6.1, we can observe 4 examples of eaters, which we will describe

below:

a) This is an eater that disperses both left and right, and travels at two different

speeds:

The first one traveling to the left has a speed of Vizq = 3
19

= 0,158

156



Caṕıtulo 6. Constructions based on collisions 157

A)

C) D)

B)

Figura 6.1: Some examples of eaters



Caṕıtulo 6. Constructions based on collisions 158

The second one that travels to the right has a velocity of Vder = − 3
39

=

−0,077

b) This eater on the contrary, handles equal speeds on both the left and the right,

which is V = 2
25

= ±0,08

c) The 3rd eater combines the two tiles for filtering at the same time that it moves

from left to right, with a speed V = − 6
55

= −0,109

d) Finally, the 4th eater, which is a glider-gun that is eating gliders on its right side

as it advances, has a velocity of V = − 12
100

= −0,12

6.1.2. Black-holes

They are structures that eat gliders and maintain their shape, the difference is

that they do not move while they are doing it, no change of position is perceived in

them. In the figure 6.2 we can see an example of a black hole.

Figura 6.2: An example of a black hole



Caṕıtulo 6. Constructions based on collisions 159

The black hole of the figure 6.2 has a fairly large period, although its speed is

minimal. The interesting part of this black hole is that it consumes different gliders

on the left and on the right, being an example of complexity within the rule.

6.1.3. Solitons

Solitons are structures that allow other gliders to pass through them without

affecting them or affecting the gliders. Within the study of signals, waves that behave

like solitons play a very important role in communications. In the figure 6.3 we can

observe two solitons of the rule 126, one that works in the tile for filtering 1 and the

other in the 2nd tile for filtering.

Figura 6.3: Some examples of solitons

In the figure 6.3, we can observe that both solitons move to the left, however

one of them allows the passage of gliders and the other of still-life, so we can design



Caṕıtulo 6. Constructions based on collisions 160

records using them.

6.2. Computability of the rule

Now that we know the basic concepts of the previous section, we are going to

explore the computing power of rule 126 with memory of 4 generations, we have all

the tools we need: we have collided relevant binary and ternary combinations and we

have the equations that will allow us to gate gates or from the Chomsky Hierarchy.

In this section we will show the results and the conclusions we reached from the

exploration.

6.2.1. Regular languages

A regular language occupes type 3 within the hierarchy of Comsky and is the

most elementary when it comes to describing languages and recognizing chains that

belong to it. We will describe a regular language using particle collisions.

Language (01)n

We define the following:

1. Be the alphabet Σ = {0, 1}

2. Be the empty string ε = ””

3. We define the following regular language:

L = {(0, 1)n|n ≥ 0}

4. Some strings that belong to this language are the following: {ε, 01, 0101, 010101, 01010101, ...}

From this definition we can obtain its regular expression, cited in the equation

6.1

RE = (01)∗ (6.1)



Caṕıtulo 6. Constructions based on collisions 161

Figura 6.4: Non-deterministic Finite automaton of regular language (01)∗

If we graph the non-deterministic finite automaton of this regular expression we

get the figure 6.4

If we simplify the automaton [14] we can get the figure 6.5

Figura 6.5: Non-deterministic Finite automaton simplified (01)∗

We can get the transitions table, which is in the table 6.1

State 0 1

→ ∗q0 q1 ∅
q1 ∅ q0

Cuadro 6.1: Table of transitions of the NFA of the language (01)∗

Now we are going to do two types of equivalences: the character-particle equiva-

lences and the state-particle equivalences. For the first ones we have that:

1. The glider g4 will be the character 0



Caṕıtulo 6. Constructions based on collisions 162

2. The glider g6 will be the character 1

For state-particle equivalencies, we have that:

1. The still-life s2 will be equal to the state q0

2. The glider g5 will be equal to the state q1

Using these equivalences, we can modify the figure 6.5 with the new notation,

which is in the figure 6.6, as we can see, now the states are labeled by particles and

transitions by others.

Figura 6.6: Non-deterministic Finite Automaton of the regular language (01)∗ with
the new equivalences

In the same way we can make the change in the table of transitions, which would

be as shown in the table 6.2.

Estado g4 g6

→ ∗s2 g5 ∅
g5 ∅ s2

Cuadro 6.2: Table of transitions of the NFA of the language (01)∗ with particles

Now let’s observe how this regular language works with collisions between parti-

cles when we want to recognize certain chains:

For the empty string: If we have input the empty string ε, we have that there

will be no transitions within the automaton, however it always starts in the initial



Caṕıtulo 6. Constructions based on collisions 163

state s2 and since it is also the final state, it will be a chain accepted by the language.

In the figure 6.7 we can observe the space of evolutions and the null alteration of

this one.

Figura 6.7: Evaluation of the empty string ε

For a zero as input: If now we enter a 0 and evaluate it with the automaton, we

would start in the state s2 and according to our new table of transitions, we would

move to g5 when we receive g4 (the equivalence of 0) as input, however g5 is not a

final state, so the string 0 would not be accepted by the language. In the figure 6.8

we can observe this behavior in the space of evolutions.

For a zero and one as input: If we have input 01 and evaluate it with the

automaton, we would start in the state s2 and we would move to g5 when reading

g4(0), and then because we are in g5 and we receive a g6 (equivalence of 1), we return

to s2, and s2 is our final state, the string would be accepted by the language. In the

figure 6.9 we can observe this behavior in the space of evolutions.

A larger string(010101010): Now we will use a somewhat large string, the

string 010101010, although it seems that it will be accepted by the language, because

it ends with a 0 our automaton will reject it. In the figure 6.10 we can observe how

it evolves with the previously explained and the result that is a false one.

A larger string(01010101): We will make an evaluation similar to the previous



Caṕıtulo 6. Constructions based on collisions 164

Figura 6.8: Evaluation of the string 0

Figura 6.9: Evaluation of the string 01



Caṕıtulo 6. Constructions based on collisions 165

Figura 6.10: Evaluation of the string 010101010



Caṕıtulo 6. Constructions based on collisions 166

one, only that now we will remove the 0 from the end of the chain, thus it would

be a string that belongs to the language that we define. In the figure 6.11 we can

observe the evolution.

Figura 6.11: Evaluation of the string 01010101

This is an example of regular language design, we could change the equivalences

of the characters and now use letters like a y b.

6.2.2. Context-Free Grammars

Context-free grammars belong to type 2 within the Chomsky hierarchy and define

production rules to generate strings that belong to the language, in the same way

they allow to recognize strings like type 3. In this section we will exemplify a context-

free grammar.



Caṕıtulo 6. Constructions based on collisions 167

Language (01)n

We will take the language defined in the section 6.2.1 and we will define its

context-free grammar in the following way:

1. G = ({A}, {0, 1, λ}, P, S), where P contains the following productions:

S → A

A→ 01A

A→ λ

Now, we will make equivalences of the definition of our grammar with the particles

in the following way:

1. G = ({g5}, {g4, g6, s2}, P, S), where P contains the following productions:

S → g5

g5 → g4g6g5, which is obtained when making the collision: g5 ↔ g2 + g2

g5 → s2, which is obtained when making the collision: g5 ↔ g6

We are going to make an example using this grammar, what we want is to generate

the string 010101 using our production rules and starting with S. First you would

change to S by g5, and then we need to apply 3 times the production g5 → g4g6g5

being that g4 = 0 and g6 = 1, and in turn returns us g5 which is our non-terminal,

this production we get if we collide g5 against g2 + g2, then to generate the empty

string s2 = λ, we collide g5 with g6 and we get our string. In the figure 6.12 we

can observe this behavior in the space of evolutions and the equivalences with the

grammar.

In this way, we can define context-free grammars that allow us to generate chains

through the derivation rules, which will be controlled with the collisions of the par-

ticles.



Caṕıtulo 6. Constructions based on collisions 168

Figura 6.12: Generation of the branch tree for the string 010101



Caṕıtulo 6. Constructions based on collisions 169

6.2.3. Logic gates

Logic gates, as described in the chapter 5, allow to perform logical operations

between one or more bits, resulting in a bit that will depend on its value from a

truth table. We will take the logic gates described in this chapter and try to simulate

their behavior with particle collisions.

XOR Gate

The XOR gate is defined in the section 5.3.2 and we can say in a general way

that if it receives equal entries, then the result will be 0, otherwise it will be a 1.

Let’s model this gate using the particles g1, g2
1 and g2 as follows:

1. g1 will be our entrance “a” of the XOR gate, and when this input is equal to

0, it means that the particle is not present in the space of evolutions, when it

is equal to 1, it implies that it is in space.

2. g2
1 will be our entrance “b” of the XOR gate, and when this input is equal to

0, it means that the particle is not present in the space of evolutions, when it

is equal to 1, it implies that it is in space.

3. g2 will act as our XOR operator, when we apply it to the tickets it will do the

operation and it will return the result according to what it received in the first

place.

In the table 6.3, we can see the truth table of the XOR gate with the new

equivalences, as well as the equation that describes it and the result that we obtain.

g1 g2
1 g1 XOR g2

1 Equation Result

0 0 0 g2 g2

0 1 1 g2
1 + g2 g2

1

1 0 1 g1 + g2 g1

1 1 0 g1 + g2
1 + g2 ∅

Cuadro 6.3: Truth table of the XOR gate with particles



Caṕıtulo 6. Constructions based on collisions 170

In the figure 6.13 we can observe how the particles behave when we evaluate the

4 different possibilities, taking the glider g2 as our XOR operator, and we can see

that they correspond to those defined within the truth table.

Figura 6.13: The 4 combinations of the truth table for the XOR gate

Conditional IF-THEN

The conditional IF-THEN is a gateway that evaluates the sentence: if A then B,

and its truth table tells us that only if it receives a 0 in the first entry and a 1 in the

second, the output will be 0, otherwise It will be a 1. We can model this gate using

the same scheme as the NAND but changing the operator.



Caṕıtulo 6. Constructions based on collisions 171

1. g1 will be our equivalent to the value 1 in binary.

2. g2
1 will be our equivalent to the value 0 in binary.

3. g2 + g2 will act as our IF-THEN operator, when we apply it to the tickets it

will do the operation and it will return the result according to what it received

in the first place.

So, in the table 6.4, we can observe the truth table of the IF-THEN gate and its

equivalent to the particle equations. We can see that the equations are very similar

to the NAND, only that our IF-THEN operator is g2 + g2.

a b IF a THEN b Equation Result

0 0 1 g2
1 + g2

1 + g2 + g2 g1

0 1 0 g2
1 + g1 + g2 + g2 g2

1

1 0 1 g1 + g2
1 + g2 + g2 g1

1 1 1 g1 + g1 + g2 + g2 g1

Cuadro 6.4: Truth table of the IF-THEN gate with particles

In the figure 6.14 we can observe the 4 combinations within the evolutions space,

which indicate that we can effectively simulate the behavior of the gate with the colli-

sions, this gate together with the NAND work with the same scheme of equivalences

between particles, so we can use them together to generate larger circuits.

NAND gate

The NAND gate is defined in the section 5.3.2 and we can say in a general way

that if it receives both inputs as a 1 then it will return a 0, otherwise it will return

a 1. Let’s model this gate using the particles g1, g2
1 and g2

2 as follows:

1. g1 will be our equivalent to the value 1 in binary.

2. g2
1 will be our equivalent to the value 0 in binary.

3. g2
2 will act as our NAND operator, when we apply it to the inputs it will do

the operation and it will return the result according to what it received in the

first place.



Caṕıtulo 6. Constructions based on collisions 172

Figura 6.14: The 4 combinations of the truth table for the IF-THEN gate



Caṕıtulo 6. Constructions based on collisions 173

In the table 6.5, we can see the truth table of the NAND gate with the new

equivalences, as well as the equation that describes it and the result that we obtain.

a b a NAND b Equation Result

0 0 1 g2
1 + g2

1 + g2
2 g1

0 1 1 g2
1 + g1 + g2

2 g1

1 0 1 g1 + g2
1 + g2

2 g1

1 1 0 g1 + g1 + g2
2 g2

1

Cuadro 6.5: Truth table of the NAND gate with particles

In the figure 6.15 we can observe how the 4 possible combinations of the truth

table of the NAND gate behave, and we can observe that there is consistency in

both the input particles and the operator, and it returns the corresponding result.

One of the implications of the fact that rule 126 with memory of 4 generations using

a majority function allows us to model a NAND gate, is that because this gate is

universal, we can say that the rule is lógicamente universal.

AND gate

The AND gate is defined in the section 5.3.2 and we can say in a general way

that if it receives both inputs as a 1 then it will return a 1, otherwise it will return

0. We are going to model this gate using the NAND gate that we defined previously,

for this we are going to use the NAND of the figure 6.16

In the table 6.6, we can see the truth table of the AND gate using pure NAND,

as well as the result obtained.

a b a AND b Equation Result

0 0 0 (g2
1 NAND g12) NAND (g12 NAND g12) g2

1

0 1 0 (g2
1 NAND g1) NAND (g12 NAND g1) g2

1

1 0 0 (g1 NAND g12) NAND (g1 NAND g12) g2
1

1 1 1 (g1 NAND g1) NAND (g1 NAND g1) g1

Cuadro 6.6: Truth table of the AND gate which were designed using NAND

In the figure 6.17 we can observe how the 4 possible combinations of the truth



Caṕıtulo 6. Constructions based on collisions 174

Figura 6.15: The 4 combinations of the truth table for the NAND gate



Caṕıtulo 6. Constructions based on collisions 175

Figura 6.16: The AND gate built with NAND

table of the NAND gate behave, and we can observe that there is consistency in both

the input particles and the operator, and returns the corresponding result.

OR gate

The OR gate is defined in the section 5.3.2 and we can say in a general way that

if it receives any input that is in 1 then it will return a 1, otherwise it will return 0.

We are going to model this gate using the NAND gate that we defined previously,

for this we are going to use the NAND of the figure 6.18

In the table 6.7, we can see the truth table of the OR gate using pure NAND, as

well as the result obtained.

a b a OR b Equation Result

0 0 0 (g2
1 NAND g12) NAND (g12 NAND g12) g2

1

0 1 1 (g2
1 NAND g12) NAND (g1 NAND g1) g1

1 0 1 (g1 NAND g1) NAND (g12 NAND g12) g1

1 1 1 (g1 NAND g1) NAND (g1 NAND g1) g1

Cuadro 6.7: Truth table of the OR gate which where designed using NAND

In the figure 6.19 we can observe how the 4 possible combinations of the truth

table of the NAND gate behave, and we can observe that there is consistency in both

the input particles and the operator, and it returns the corresponding result.

NOT gate

The NOT gate is defined in the section 5.3.2 and it is simply to invert the output

we receive, so if we receive a 1 then a 0 will come out. Let’s model this gate using



Caṕıtulo 6. Constructions based on collisions 176

Figura 6.17: The 4 combinations of the truth table for the AND gate



Caṕıtulo 6. Constructions based on collisions 177

Figura 6.18: The OR gate built with NAND

the NAND gate that we defined previously, for this we will use the NAND of the

figure 6.20

In the table 6.8, we can see the truth table of the NOT gate using pure NAND,

as well as the result obtained.

a NOT a Equation Result

0 1 g2
1 NAND g12 g1

1 0 g1 NAND g1 g2
1

Cuadro 6.8: Truth table of the NOT gate with NAND

In the figure 6.21 we can observe how the 2 possible combinations of the truth

table of the NOT gate behave, and we can observe that there is consistency in both

the input particles and the operator, and it returns the corresponding result.

6.2.4. Rule computing power

Once we have finished the analysis of the possible systems that can be modeled

using the collisions of the particles, we can make an opinion of what was found and

what could possibly be in the rule:

1. The rule is logically universal: This fact is based on the simulation of the

gate NAND using the particles, because this gate is one of the two universal

gates (NAND and NOR), and that with them you can build all the other gates

and equations according to algebra of boole, if we contain this gate then it

allows us to say that the rule is logically universal.



Caṕıtulo 6. Constructions based on collisions 178

Figura 6.19: The 4 combinations of the truth table for the OR gate



Caṕıtulo 6. Constructions based on collisions 179

Figura 6.20: The NOT gate built based on NAND

Figura 6.21: The 2 combinations of the truth table for the NOT gate



Caṕıtulo 6. Constructions based on collisions 180

2. The rule could have a Turing machine associated: One of the most

relevant points in the analysis of a cellular automaton is to know if the rule

is capable of performing universal computation, or that it has an associated

Turing machine. The rule 126 with memory, because it is logically universal

and could simulate the type 3 and 2 languages of the Chomsky hierarchy, it

indicates that the probability that the rule has an associated Turing machine

is high, so it would be worth trying with some models.

3. The rule allows us to simulate logic circuits: This implication is born

from the fact that it is logically universal, since with the NAND gate we can

simulate any other gate by nesting several, we can receive an expression in

boolean algebra and simulate it with this operation, we can also use the IF-

THEN operation. to which they work in the same space and with the same

equivalences.

In summary, the computational power of the rule is high and allowing us to

simulate logic circuits opens us a step to make more complex composite structures.



Caṕıtulo 7

SOL: Logical Operations Simulator

In this chapter we will describe this thesis product: a system which will be able to

simulate every logic designs shown at the chapter 5. The content inside this chapter

will show the basics for developing a complete system, which are: user’s and sytem’s

requirements, system architecture, all modules within the architecture and the classes

they will contain, the used technologies (programming languages, frameworks, etc.)

and finally, the system’s tests which will validate the requirement’s fulfillments.

7.1. Requirements

In this section we will describe the essential requeriments for the system, in such

a way SOL would not be able work without them (functional requirements), and the

requirements that add value but are not imprescindible for this system to work (non

functional requirements).

7.1.1. Functional requirements

1. RF1. Save initial condition: The system will allow the user to save the an

evolution’s initial condition, either in time t0 or the first four times in the case

of the rule with memory.

2. RF2. Save the evolution: The system will allow the user to save the auto-

maton’s evolution, in the stablished evolutions’quantity, either in plain text or

181



Caṕıtulo 7. SOL: Logical Operations Simulator 182

an export to PDF or PNG.

3. RF3. Mosaics added per item: The system will allow the user to fill with

mosaics the evolution’s blank spaces in order to use the rule with memory,

either for the tiles for filtering or the particles.

4. RF4. Multiple mosaics in the evolutions’space: The system will allow

the user to add multiple mosaics in the evolutions’space for its evaluation.

5. RF5. Convertion of the first 4 evolutions to a regular matrix: The sys-

tem must transform the first four times of evolutions’space filled with mosaics

in a regular matrix for evaluating with the memory rule.

6. RF6. Initial data load: The system will allow the user to set the system’s

initial condition for at least four different ways:

Elemental way: This means that user will load a live cell in the middle

of the evolutions’space.

Random way: The user will be able to choose the zerosánd ones’percentages

wanted to be in the initial condition.

From a file: The system will allow to load files with initial conditions to

evaluate the automaton.

Manually: The user can enter the initial conditions manually.

7. RF7. Tiles for filtering can be filtered: The system will allow the user to

filter the evolutions of the rule with memory applying a filter either for one or

two tiles for filtering.

8. RF8. Help option for user: The system must show an option in menu to

see the user manual.

9. RF9. Logic operations load: The system will allow the user to load the

wanted logic operations.



Caṕıtulo 7. SOL: Logical Operations Simulator 183

7.1.2. Non functional requirements

1. RNF1. The system is required to be handled instinctively: This re-

quirement means that user can handle the most of the system even if the user

manual has not been read.

2. RNF2. Ths system must be scalable: Due to planned upgrades to the

system in order to build a more complex one, this system’s programming must

be scalable to develop new features easier through code reusing.

7.2. System’s architecture

Our system’s architecture can be seen graphically in the figure 7.1. As we can

see, there is our user, who is going to interact with the application once installed

on their computer. Neither database instances nor servers were used due to the

requirementsñeeds.

Figura 7.1: SOL’s architecture



Caṕıtulo 7. SOL: Logical Operations Simulator 184

7.3. System’s modules

Our system “Logical Operations Simulator”, has 3 main modules as it can be

seen in the figure 7.2, defined as:

1. ACE: Also known as the elemental cellular automaton module, inside it we

will add the required classes to evaluate the 256 elemental rules.

2. MemoryRule: Also known as the elementary cellular automata’s module,

inside it we will have all the classes for mosaics handling in the rule, the inter-

actions with them and the transformation to a regular matrix for its evaluation.

3. LogicalOperations: This module will allow us to use the defined logical ope-

rations to see them within the evolutions’space and understand thier behaviour.

Figura 7.2: SOL’s architecture

7.3.1. Elemental Cellular Automatons

In the figure 7.3 we can see the classes diagram of the three modules accoirding

to model-view-controller. We have all our graphics interfaces, our controller and aour



Caṕıtulo 7. SOL: Logical Operations Simulator 185

Figura 7.3: The classes which make up Elemental Cellular Automatons

model for elemental automatons. Now we will describe all classes per package, their

attributes and methods and what they are for.

In the figure 7.4 we can see the classes’most important attributes and methods,

as well as their interaction with the other modules through have them as attributes.

Then we will describe in detail each module and class

For the model’s package

In this package we have two classes: the Regla class, and the AutomataACE class,

which consist in:

1. Regla: This class stores the definition of the rule we are going to plot and the

neighbour interaction rules.

2. AutomataACE: Contains our rule, the evolutions’space and because of it

will show us how it evolves in time, it will work with threads and updates the

graph.



Caṕıtulo 7. SOL: Logical Operations Simulator 186

Figura 7.4: The classes which make up Elemental Cellular Automatons

For the view’s package

In this package we have five classess: PanelPrincipal, PanelElemental, MarcoPrin-

cipal, PanelGraficoACE and MarcoGraficoACE, which consist in:

1. PanelPrincipal: This class will be the panel which contain all other panels

in the future. This will allow us to do polimorfism and the change between

modules.

2. PanelElemental: This class contains all labels, radio buttons, buttons and

text boxes so the user can introduce the data to evaluate the ACE’s elemental

rule.

3. MarcoPrincipal: This class is a JFrame which contains the PanelPrincipal

and is only a container.

4. PanelGraficoACE: This class is the one which will plot the automaton’s

evolution in time, it will print the cell strips and show what happens in finite

time intervals.



Caṕıtulo 7. SOL: Logical Operations Simulator 187

5. MarcoGraficoACE: This class is a JFrame too, it contains the PanelGrafi-

coACE to show it to the user.

For the controller’s package

In this package we have only one class: ControlACE, which will do all panel’s

events when evaluating an elemental rule is wanted, either the inputs or outputs

pickings, and the plot through threads.

7.3.2. Rule 126 with memory

In the figure 7.5 we can see the classes diagram which the rule 126 with memory of

4 generations is composed of, we also can see that there are already several controllers

for the rule, either for graphs or mosaics load and evaluation. Then we will describe

each class, their functinality and purpose.

Figura 7.5: The classes which module of Rule 126 with memory is made of

In the figure 7.6 we can see the classes’most important attributes and methods,

as well as their interaction with the other modules through have them as attributes.

Then we will describe in detail each module and class.



Caṕıtulo 7. SOL: Logical Operations Simulator 188

Figura 7.6: The described classes which compose the module of Rule 126 with me-
mory



Caṕıtulo 7. SOL: Logical Operations Simulator 189

For the model’s package

In this package we hace 3 classes: AutomataMemoria, Estructura and Regla, la

Regla class is explained in the ACE section, that’s why will only explain the two

added classes:

1. AutomataMemoria: This automaton, unlike ACE’s automaton, only works

with the rule 126 with four generations’memory, it receives a matrix of four

rows by any number of columns (cells), and calculates the generations to 50

(panel’s size).

2. Structure: Now, in our system we will have 2 tiles for filtering, 2 still-life and

6 gliders, these 10 items will be treated as mosaics and will be added. but it has

the same features: a group of cells which define them, that’s why we defined

them as Structures.

For the view’s package

In this package we will found three classes: PanelGraficoMemoria, PanelEstruc-

tura and PanelReglaMemoria, let’s describe them:

1. PanelGraficoMemoria: This panel will allow the user to drag the mosaics

and set them freely, once clicked on the Evolve button, it will graph and show

the regular matrix obtained from the mosaics.

2. PanelReglaMemoria: This panel will be our las control panel, but in this

case it will be for the rule with memory, inside it, we will be able to see the

settings with radio buttons and it will load the right panel to show and add

the mosaics.

3. PanelEstructura: This panel will be inside the PanelReglaMemoria and show

the right mosaics according to the user choice, as well as warn when the user

clicks some add button according to the wanted selection to add it to Panel-

GraficoMemoria.



Caṕıtulo 7. SOL: Logical Operations Simulator 190

For the controller’s package

This package has 4 controllers: ControlDragAndDrop, ControlAniadeMosaico,

ControlRadioBotonEstructura and ControlEvolucionaMemoria, which have functions

for either graphs or automaton’s evolution, we describe them as:

1. ControlDragAndDrop: This controller will allow the user to drag the inser-

ted mosaics in PanelGraficoMemoria, besides it limits the mosaic movements

to every 10 pixels, which keeps a symmetry.

2. ControlAniadeMosaico: This controller is activated when in PanelEstruc-

tura the user clicks some add button, then it detects which mosaic is wanted

to be added, and sends that mosaic’s definition to PanelGraficoMemoria for its

graphing.

3. ControlRadioBotonEstructura: This controller will make the selected radio

button in PanelReglaMemoria, is the data to be loaded in PanelEstructura. If

there is no change, it will refresh that panel.

4. ControlEvolucionaMemoria: This controller will take the mosaics from Pa-

nelGraficoMemoria and convert them to a regular matrix, after that it will

update that panel sending that matrix and evolving to 50 generations.

7.3.3. Logical Operations

In the figure 7.7 we can see the classes diagram which composes our first logical

operations’module. This implies that the three parts are: regular languages, context-

free grammars, and logic gates. For those we will use several panels to show the

options. Similarly we will use the model-view-controller.

In the figure 7.8 we can see the classes’most important attributes and methods,

as well as their interaction with the other modules through have them as attributes.

Then we will describe in detail each module and class:

For the model’s package

For this package we have three classes: Filtro, AutomataMemoria and Regla.

We have already described the classes AutomataMemoria and Regla in the previous



Caṕıtulo 7. SOL: Logical Operations Simulator 191

Figura 7.7: The clsses that compose the Loical Operations’module

Figura 7.8: The described classes which compose the module of Rule 126 with me-
mory



Caṕıtulo 7. SOL: Logical Operations Simulator 192

modules, so we will describe the class Filtro.

1. Filtro: This class will allow us to store the original matrix and filter it applying

either the 1st tile for filtering, the 2nd tile for filtering or both at the same time.

For the view’s package

For this one we have 6 classes, which will help us to generate the graphic interfaces

that the user will interact with and will allow to choose the corresponding settings.

This classes are enumerated and described below:

1. PanelCompuerta: This panel will allow us to see a table with the zerosánd

onesávailable combinations to evaluate the chosen gate, as well as its equivalent

equation in particles and some radio buttons for selecting the combination we

want to see.

2. PanelGramatica: This panel will show us a text field to set the string we

want to be generated with the production rules we have. Then we will see

the string converted to particles collisions when the automaton’s evolution is

triggered by the user.

3. PanelLenguajeRegular: This panel will show us a text field to set the string

we want to confirm to belong the language, to do this it will show us the

auomaton that does this evaluation according to the chosen regular expression,

evaluates the string, and prints the message telling whether it belongs or not.

4. PanelOperacionLogica: Thius panel will contain the previous three ones and

will change to one or another according to user choices, as well as send the right

information to our controller when evolving or filtering is wanted.

For the controller’s package

We have only one class in this package, and its functionality is:

1. ControlEvolucionaOperacion: It will listen to our logical operations’panel,

and when we click some evolve or filter button, it will listen to the information

and send it to our automaton and graphic panel.



Caṕıtulo 7. SOL: Logical Operations Simulator 193

7.4. Technologies to use

In this section will be described the used technologies, as well as a short justifica-

tion of why they were chosen. The programming languages, paradigms and versions

used were:

1. Object Oriented Programming: We use this paradigm because it makes

easier to see the rule as an object and automatons as another one.

2. Java: We use Java because it allows the compatibility between computers with

different operating system, by installing the Java Virtual Machine, besides it

is an object oriented language programming, which will allow us to use this

paradigm. The JDK version used is 8.1.

7.5. System tests

In this section we will describe the made tests ti the system either for ideal

conditions or possible errors when an user uses the application. The tests were madre

by system’s modules.

7.5.1. Elemental Cellular Automatons

On the system startup, it shows the elemental cellular automatons’module’s

screen and the option “Elemental” selected by default, if we set the rule rule 126

and the Elemental option keeps selected, in a space of 250 cells by 250 generations,

we can see the result of the figure 7.9.

If we decide to choose the option “Random”, some buttons will be enabled to

change de zerosánd ones’percentages. In the figure 7.10 we can see 3 cases:

1. If we change the ones’percentages it will show a message where we can set the

new value between 1 and 99 %

2. If we change the zeros’percentages it will show a message where we can set the

new value between 1 and 99 %



Caṕıtulo 7. SOL: Logical Operations Simulator 194

Figura 7.9: The system using the Elemental option



Caṕıtulo 7. SOL: Logical Operations Simulator 195

3. Let’s suppose that we use 40 % of live cells and 60 % of dead cells, in a space

of 200 cells by 250 generations,, we will see whats if shown in the figure 3.

If we choose the option “From file”, the system will enable the button to upload

the file, in the figure 7.11 we can see graphically the steps to test this option whicha

are:

1. To illustrate it we will use the file of figure 1, which contains 120 characters of

zeros and ones.

2. When clicking the button to upload a file, a window is deployed to choose it

no matter which directory is in.

3. Once uploaded, the system will upload the cells value to 210 and it will allow

us to graph it to the 250 generations we selected, for this example we used the

rule 54.

The last option is to use it manually. In the figure 7.12 we can see how it would

be handled manually, set the same string used in the File option, but using the rule

230 with 150 generations. We can see that the system shows the automaton evolving.



Caṕıtulo 7. SOL: Logical Operations Simulator 196

1. 2.

3.

Figura 7.10: The system using the Random setting



Caṕıtulo 7. SOL: Logical Operations Simulator 197

1. 2.

3.

Figura 7.11: The system using the File setting



Caṕıtulo 7. SOL: Logical Operations Simulator 198

Figura 7.12: The system using the Manual option



Caṕıtulo 7. SOL: Logical Operations Simulator 199

7.5.2. Rule 126 with memory

Now we will describe this module by classifying the tests with tiles for filtering,

gliders and still-life, to show how they are used and how are shown within the space.

Tiles for filtering

In the figure 7.13, we can see 4 pictures which represent the screens of module

two’s system, in the first one the startup system is shown, with the default tiles for

filtering option, and shows a graphic panel where is pointed the first 4 lines with

squares, those are our reference lines and will be the ones which will be taken to

convert the mosaics. In the next one we see the added of a mosaic of tile for filtering

1 pointed marked with a blue square, we can add much more and move them to

generate an evolution as it is shown in the third picture, the mosaics that are not in

the first 4 rows will be ignored in evolution, finally in the last picture, we clicked to

Evolve button, this will transform the array to a regular matrix and evolves it.

In the figure 7.14 we can see the case for the tile for filtering 2, again, we can add

a tile for filtering block as it is shown in the first figure, after that, we can add much

more and move them as it is shown in the second picture. The mosaics that are not

in the first 4 lines will be ignored. Finally if we click the Evolve button, the result

will be shown.

Gliders

In the figure 7.15 we can see how gliders work within these evolutions, we have

6 identified gliders, which coexist inside the tiles for filtering 1 and 2 for evolving,

that’s why we show the examples when we add and surround them with tiles for

filtering for its evolving, again, the mosaics that are not in the first 4 lines will be

ignored.

Still-life

In the figure 7.16, we can see the cases of the two still-life identified with the

corresponding tiles for filtering, as well as its evolution after becoming a regular



Caṕıtulo 7. SOL: Logical Operations Simulator 200

Inicio del 2do módulo Añadido de un mosaico de 
fondo periódico

Los mosaicos en rojo se ignorarán Evolución de los mosaicos puestos

Figura 7.13: The evolution using the tile for filtering 1



Caṕıtulo 7. SOL: Logical Operations Simulator 201

Añadido de un único mosaico Varios mosaicos, se ignoran los señalados con el 
cuadrado rojo

Evolución del arreglo

Figura 7.14: The evolution using the tile for filtering 2



Caṕıtulo 7. SOL: Logical Operations Simulator 202

Figura 7.15: 6 gliders and their combinations with tiles for filtering



Caṕıtulo 7. SOL: Logical Operations Simulator 203

matrix and mosaics that define them, again, the mosaics that are not in the first 4

lines will be ignored.



Caṕıtulo 7. SOL: Logical Operations Simulator 204

Figura 7.16: The 2 still-life and their combinatoins with tiles for filtering



Caṕıtulo 7. SOL: Logical Operations Simulator 205

7.5.3. Logical operations

In this section we will describe the tests of the our system’s third and final module:

the logical operations, we will describe available options and how the software works.

regular languages

In the figure 7.17 we can can see the demonstration of how settings of regular

languages work. The first picture shows the module’s startup, while the second one

shows when we introduce an input string that does not belong to the language,

it show a message telling that it does not belong and the equivalent evolution in

particles. As well as we can also filter in three different ways: with the first tile for

filtering, with the second tile for filtering, o applying both at the same time. In the

figure 6 it is shown the message when we introduce a string which do belong.

Context-free grammars

In the figure 7.18 we can see how the Context-free grammar’s option works, in

which it is shown the production rules and again, it is generate the equivalent with

particles. We can also filter and save: the configuration, that would save the first 4

evolutions of zeros and ones; and the evolution, that would save all the generated

zeros and ones. We can export the graph with the evolutions to either PNG or PDF.

Logic gates

In the figure 7.19 we can see how it is used the logic gate option, we have 6 options:

XOR, IF-THEN, NAND, AND, OR and NOT. The user can choose whichever option

as it is shown in the figures and select a radio button of the desired combination of

zeros and ones to be evoled. Once set, when clicking the Evolve button it will be

shown the generated particles combination.



Caṕıtulo 7. SOL: Logical Operations Simulator 206

1 2

3 4

5 6

Figura 7.17: The regular expression’s settings



Caṕıtulo 7. SOL: Logical Operations Simulator 207

1 2

3 4

5 6

Figura 7.18: The settings to handle Context-free grammars



Caṕıtulo 7. SOL: Logical Operations Simulator 208

1 2

3 4

5 6

Figura 7.19: The settings to handle logic gates



Caṕıtulo 8

Final results

This section describes the results obtained from this Thesis, as well as the con-

clusions and work that will be carried out in the future.

8.1. Celebration of late. Prof. Harold V. McIntosh

Achievements 2017

This event was held on November 29 and 30, 2017 at the Faculty of Computer

Science of the Autonomous University of Puebla, located in Av. San Claudio and

14 Sur, Ciudad Universitaria, C. P. 72570, Puebla, Mexico. The lectures were in

memory of Dr. Harold V. McIntosh, pioneer of computing in Mexico, and which

conducted research on the topics: REC, CONVERT, CAMEX, PLOT, Flexagons,

Cellular Automata, complex variable, quantum mechanics, matrix theory , group

theory and differential equations.

It involved renowned personalities within these areas such as: Leon Chua, Juan

Carlos Seck Tuoh Mora, Kenichi Morita, Genaro Juarez Martinez, Andrew Ada-

matzky and Stephen Wolfram. My participation in the event was giving the con-

ference “Recognizing chaos and complexity: case study in the elementary cellular

automaton rule 126”, which was held on November 29, 2017 from 6:00 pm to 6:20

pm. In this conference I presented the results of the study of the elementary rule

(chapter 3), as well as some that had of the rule with memory (chapter 4). In the

figure 8.1 we can observe some photographs, as well as the constancy obtained by

209



Caṕıtulo 8. Final results 210

participating in said event.

Figura 8.1: Some photos of the event Celebration of Late Prof. Harold V. McIntosh
Achievements



Caṕıtulo 8. Final results 211

8.2. The Ninth International Conference on Com-

plex Systems 2018

The ninth edition of the conferences on Complex Systems was held from July 22nd

to July 27th, 2018 at the Hyatt Regency, located at 575 Memorial Drive, Cambrid-

ge, Massachusetts, USA 02139. During the event were held conferences, discussions

tables and poster presentations on topics of non-linear dynamics, neural networks,

mathematical systems, cellular systems, biomolecular systems and Artificial Intelli-

gence. It involved world-renowned personalities in the ares of Complex Systems, such

as: Stephen Wolfram, Yaneer Bar-Yam, H. Eugene Stanley, César Hidalgo, Spencer

Wells, Albert-László Barabasi, Raúl Rojas and Steven Hassan.

Our participation consisted of giving a lecture entitled “Recognizing complex

behavior emerging from chaos in cellular automata”, which took place on July 23

from 15: 40-16: 00. In this conference the results of the elementary rule and the

collisions of particles that generate objects within the rule were presented, as well as

the gliders-gun that allow the existence of artificial life.

We also publish an article that has the same title of the conference in the book

that contains the memories of the event, which is entitled “Unifying Themes in

Complex Systems IX”, Springer, pages. 82 - 90. In the figure 8.2 we can observe

some photos of the event, as well as the published book that contains our article.



Caṕıtulo 8. Final results 212

Figura 8.2: Some photos of the event The Ninth International Conference on Complex
Systems



Caṕıtulo 9

Conclusions

The cellular automata allow us to model behaviors that if we used another method

to do it would be more complex, the study of these models, their behaviors, the

capabilities they have to resemble reality, or in the case of this Terminal Work, to

allow us to compute Something opens a way for us to process information and find

results in a creative and efficient way.

In the academic part this TT allowed me to acquire study habits, supported me

to develop the perseverance to learn something different, despite the failures and

obstacles that arose when analyzing the model, continue believing that we could

obtain interesting results from their study . I could understand in a broad way,

I dare say even specialized, what is a cellular automaton, its characteristics, the

importance of not only staying in what the definition says, of exploring further using

a memory function, of recognizing patterns (a vital part of the TT and perhaps the

one that cost me the most) and model them in a way that allows us to .exploit.our

system and extract as much information as possible. I explored a branch of new

knowledge, Complex Systems and non-conventional computing were pillars in the

research, development and results presented in this document.

Opening up a bit the knowledge part, the potential that the memory showed by

causing elements of complexity to emerge within the chaotic rules, which we can

point out as rules that are not strongly chaotic, opens us an area of investigation not

only with the automatons elementary cell phones, but with cellular automata that

are considered chaotic. Now, these elements of complexity, as we already have the

213



Caṕıtulo 9. Conclusions 214

history and all the study that the game of life has had, we can characterize them

and study them in a similar way to what is known about this model, even using the

languages, context-free grammars, etc, allows us to venture into the reversible and

conservative computation, current issue and which has proved to have convenient

characteristics.

In the personal field, I learned that constant work is the key to success, in the

development of this TT one of the things that was presented very often was the

uncertainty, being a research work did not exist the information that was required

for to be able to perform the described software, it was required to carry out the

study thoroughly and we did not know for sure if the rule was going to demonstrate a

”docile”behavior, with which we could model the computations in an understandable,

simple and effective way. I also understood that the search because the work is better

than we could expect is a second key for an investigation to be exceptional, thanks

to the demands and advice of my director of TT these results were obtained, as well

as my personal demand for presenting a document in excellence.

I will conclude that researching in this field has a future, there are already many

works dedicated to cellular automata, and we need many more to understand the

computational universe, its limitations and the limitations that we can acquire when

designing one way or another. Finally, the computational capabilities of a system

can give us a strong support to solve problems that in one instance would take too

much time.



Caṕıtulo 10

Future Work

After all the analysis and the system made for this TT, the future work we can

do is first that our system allows you to simulate any expression that is written with

the boolean algebra using these logic gates. Also, because the rule already shows

that it is logically universal, we know that the possibility of having an associated

Turing machine is high, so we need to start a scan focused on merely finding it.

Now, cellular automata have applications in many areas, we will focus these results

on the understanding of cancer, the main motivation of this terminal work. One of

the potentialities of the rule is the fact that we can combine periodic funds and the

periodic fund that is mostly presented has a flexibility to be used very well, so we

can take advantage of that flexibility to perform more complex computations, and

even design a processor or higher things with collisions.

The idea that the software is updated so that anyone simply drag the gates that

you want to use, nest them, and the software translates them into collisions, is a

good idea to understand how the rule works, as well as the power they have to dock

practically to any collision, and since after the exploration we know that the rule

has symmetries with the collisions, we can use these symmetries as supports for the

coupling.

There is work to be done with these results, as well as with things that were

not yet clear from the rule, but because of the current results, we know that they

are explorations and investigations that need to be done since the rule has shown

potential and very high possibilities of to be able to simulate bigger things.

215



Bibliograf́ıa

[1] A. Adamatzky. Identification of Cellular Automata. Taylor y Francis, 1 edón.,

1994.

[2] A. Adamatzky. Computing in Nonlinear Media and Automata Collectives. Ins-

titute of Physics Publishing, 1 edón., 2001.

[3] A. Adamatzky. Collision-Based Computing. Springer, 1 edón., 2002.

[4] A. Adamatzky. Advances in Unconvetional Computing. Volume 1: Theory.

Springer, 1 edón., 2017.

[5] R. Alonso-Sanz y M. Mart́ın. Elementary cellular automata with memory. Com-

plex Systems, 14:99–126, 2003.

[6] Y. Bar-Yam. Dynamics of Complex Systems. Addison Wesley, 1 edón., 1997.

[7] E. R. Berlekamp, J. H. Conway, y R. L. Guy. Information and Transmission in

Cellular Automata. Winning Ways for your Mathematical Plays vol. 2: Games

in Particular, 2 edón., 1982.

[8] E. Borriello y S. I. Walker. An information-based classfication of elementary

cellular automata. págs. 1–8, 2017.

[9] M. Cook. Universality in elementary cellular automata. Complex Systems,

15:1–40, 2004.

[10] J. C. Seck-Tuoh-Mora G. J. Mart́ınez, A. Adamatzky y R. Alonso-Sanz. How to

make dull cellular automata complex by adding memory: Rule 126 case study.

Complexity, 15(6):34–49, 2010.

216



Bibliograf́ıa 217

[11] D. A. R. Gomez. Descripción y aplicaciones de los autómatas celulares. Verano

de Investigación 2011, págs. 3–5, 2011.

[12] A. C. González. La medida del caos en autómatas celulares que presentan

comportamiento colectivo no trivial. Computer Based Learning Unit, University

of Leeds, págs. 3–7, 1998.

[13] P. Grogono. Dynamic systems. Stanislaw Lem, págs. 8–12, 2005.

[14] J. E. Hopcroft, R. Motwani, y J. D. Ullman. introducción a la Teoŕıa de autóma-

tas, lenguajes y computación. Addison Wesley, 1 edón., 2007.

[15] K. Culik II y S. Yu. Undecidability of ca classification schemes. Complex

Systems, 2:177–190, 1985.

[16] R. Klages. Introduction to dynamic systems. Queen Mary, University of Lon-

don, págs. 12–19, 2008.

[17] O. Martin, A. M. Odlyzko, y S. Wolfram. Algebraic properties of cellular auto-

mata. Communications in Mathematical Physics, 93:219–258, 1984.

[18] G. J. Mart́ınez. Grados de reversibilidad en autómatas celulares lineales. págs.

1–31, 1998.

[19] G. J. Mart́ınez. A note on elementary cellular automata classification. págs.

1–25, 2013.

[20] G. J. Mart́ınez y A. Adamatzky. Cellular automaton super-collider: An abstract

model. MIT Technology Review.

[21] G. J. Mart́ınez, A. Adamatzky, y R. Alonso-Sanz. Descripción y aplicaciones

de los autómatas celulares. págs. 10–39, 2013.

[22] G. J. Mart́ınez, A. Adamatzky, F. Chen, y L. Chua. On soliton collisions between

localizations in complex elementary cellular automata: Rules 54 and 110 and

beyond. Complex Systems, 21:1–26, 2012.

[23] G. J. Mart́ınez, A. Adamatzky, y H. V. McIntosh. Complete characterization

of structure of rule 54. Complex Systems, 23:1–33, 2014.



Bibliograf́ıa 218

[24] G. J. Mart́ınez, A. Adamatzky., y H. V. McIntosh. A computation in a cellular

automaton collider rule 110. págs. 1–37, 2016.

[25] G. J. Mart́ınez, A. Adamatzky, y K. Morita. Logical gates via gliders collisions.

Journal of Cellular Automata, 13(4):325–346, 2018.

[26] G. J. Mart́ınez, A. Adamatzky, y C. R. Stephens. Cellular automaton superco-

lliders. págs. 1–24, 2011.

[27] G. J. Mart́ınez, H. V. McIntosh, y J. C. Seck-Tuoh-Mora. Gliders in rule 110.

International Journal of Unconvetional Computing, 2:1–49, 2005.

[28] G. J. Mart́ınez, H. V. McIntosh, J. C. Seck-Tuoh-Mora, y S. Vergara. Rule 110

objects and other collision-based constructions. págs. 1–25, 2006.

[29] G. J. Mart́ınez, H. V. McIntosh, J. C. Seck-Tuoh-Mora, y S. V. C. Vergara.

Determining a regular language by glider-based structures called phases fi 1 in

rule 110. págs. 1–26, 2006.

[30] G. J. Mart́ınez, J. C. Seck-Tuoh-Mora, y H. Zenil. Wolfram’s classification and

computation in cellular automata classes iii and iv. págs. 1–27, 2012.

[31] H. V. McIntosh. Linear cellular automata. págs. 1–26, 1987.

[32] A. J. Morales, C. Gershenson, D. Braha, A. A. Minai, y Y. Bar-Yam. Unifying

Themes in Complex Systems IX. Springer, 1 edón., 2018.

[33] J. V. Neumann. Theory of Self-Reproducing Automata. Library of Congress, 1

edón., 1966.

[34] N. H. Packard y S. Wolfram. Two-dimensional cellular automata. Journal of

Statistical Physics, 38(5), 1985.

[35] T. Panitanarak. Cellular automata. CS6800 Summer, págs. 2–4, 2009.

[36] J. C. Seck-Tuoh-Mora. Autómatas celulares lineales reversibles. págs. 5–21,

1997.



Bibliograf́ıa 219

[37] M. A. Shereshevsky. Lyapunov exponents for one-dimensional cellular automata.

Journal of Nonlinear Science, 2:1–8, 1992.

[38] S. Wolfram. Cellular automata as models of complexity. CALT, 66(938):1–12,

1982.

[39] S. Wolfram. Cellular automata. Los Alamos Science, págs. 4–9, 1983.

[40] S. Wolfram. Statistical mechanics of cellular automata. Reviews of Modern

Physics, 55(3):600–644, 1983.

[41] S. Wolfram. Cellular automata as models of complexity. Nature, 311(5985):1–7,

1984.

[42] S. Wolfram. Computation theory of cellular automata. Communications in

Mathematical Physics, 96:15–57, 1984.

[43] S. Wolfram. Universality and complexity in cellular automata. Physica, 10:1–35,

1984.

[44] S. Wolfram. Cellular automaton supercomputing. págs. 1–9, 1986.

[45] S. Wolfram. Tables of cellular automaton properties. Theory and Applications

of Cellular Automata, págs. 485–557, 1986.

[46] S. Wolfram. A New Kind of Science. Wolfram Media, 1 edón., 2002.

[47] A. Wuensche y M. Lesser. The Global Dynamics of CellularAutomata. Addison-

Wesley, 1 edón., 1992.



Glossary

Attractor It is the region of the state space in which there are no exit routes. 24

Binary collisions They are collisions that only involve two particles within the

evolution space. 80

Cellular Automata It is an algebraic structure composed of states, dimension,

alphabet and rules of evolution.. 28

Cellular Automata with memory They are cellular automata that evaluate mo-

re than one evolution over time and have a memory function. 30

Collision points They are evolutions where a glider or a stationary structure collide

with each other in some evolution and generate a new pattern. 72

Collision-based computing It is a model that allows us to perform operations

similar to those of a computer using elements that when interacting between

them generate the bases to compute something. 147

Complex Systems They are systems that have characteristics such as emerging,

non-trivial collective behavior and being non-linear.. 46

De Bruijn Diagrams The paths in a de Bruijn diagram can represent chains, con-

figurations, or classes of configurations in the evolutions space. 42

Dynamic System It is a system that, in reality or conceptually, evolves over time.

23

220



Glossary 221

Elementary Cellular Automata They are Cellular Automata that work in one

dimension and their evolution rules only work with their immediate neighbors.

35

Glider This type of structure is characterized by being a set of cells that seem to

move either to the left or to the right and maintain their shape. 61

Glider-gun They are a set of cells that seem to “shoot” gliders, we can also know

them as generators of gliders. 61

Linearity It replicates how “stable” a system is. 25

Lyapunov Exponents They are a set of numbers that are usually used to detect

the presence of chaos in dynamic systems. 27

Still-life They are similar to gliders, except that with the difference that they do

not move to the left or to the right, they remain in the same position.. 61

Ternary collisions They are collisions that only involve three particles within the

evolution space. 93

Tile for filtering They are a set of cells that look like a mosaic that repeats infini-

tely, but allow the existence of gliders, gliders-gun and stationary structures.

61



Apéndice A

Attractors of the rule 126

In this section we will place all the descriptive tables of the attractors (mass,

period, number of leaves and grade) for the attractors of length 2 to length equal to

15 because this is not found in the work done by Andrew Wuensche [47], from the

length 16 to 24 the table and some images of the most interesting attractors will be

placed. The images shown can be understood by following the following color code:

1. A line of cherry color indicates an edge.

2. A blue dot indicates a vertex.

A.1. Attractors with length equal to 2

No. of attractor Mass Period Num. of

leafs

Grade

1 4 1 2 3

Cuadro A.1: Attractors for strings of length equal to 2

A.2. Attractors with length equal to 3

222



Apéndice A. Attractors of the rule 126 223

No. of attractor Mass Period Num. of

leafs

Grade

1 8 1 6 3

Cuadro A.2: Attractors for strings of length equal to 3

A.3. Attractors with length equal to 4

No. of attractor Mass Period Num. of

leafs

Grade

1 8 1 6 3

2 4 2 2 2

3 4 2 2 2

Cuadro A.3: Attractors for strings of length equal to 4

A.4. Attractors with length equal to 5

No. of attractor Mass Period Num. of

leafs

Grade

1 12 1 10 3

2 4 2 2 2

3 4 2 2 2

4 4 2 2 2

5 4 2 2 2

6 4 2 2 2

Cuadro A.4: Attractors for strings of length equal to 5

A.5. Attractors with length equal to 6



Apéndice A. Attractors of the rule 126 224

No. of attractor Mass Period Num. of

leafs

Grade

1 52 1 35 6

2 4 2 2 2

3 4 2 2 2

4 4 2 2 2

Cuadro A.5: Attractors for strings of length equal to 6

A.6. Attractors with length equal to 7

No. of attractor Mass Period Num. of

leafs

Grade

1 128 1 91 6

Cuadro A.6: Attractors for strings of length equal to 7

A.7. Attractors with length equal to 8

No. of attractor Mass Period Num. of

leafs

Grade

1 136 1 106 7

2,3,4,5 28 6 20 3

6,7 4 2 2 2

Cuadro A.7: Attractors for strings of length equal to 8

A.8. Attractors with length equal to 9



Apéndice A. Attractors of the rule 126 225

No. of attractor Mass Period Num. of

leafs

Grade

1 80 1 78 3

2 al 9 44 6 33 4

10, 12 al 19 4 2 2 2

11 44 6 33 4

Cuadro A.8: Attractors for strings of length equal to 9

A.9. Attractors with length equal to 10

No. of attractor Mass Period Num. of

leafs

Grade

1 124 1 122 3

2,3,5,8,11 104 4 82 7

4,7,10,13,17 56 6 44 4

6,9,12,14,16 12 2 7 4

15,18 al 26 4 2 2 2

Cuadro A.9: Attractors for strings of length equal to 10

A.10. Attractors with length equal to 11

No. of attractor Mass Period Num. of

leafs

Grade

1 200 1 198 3

2 al 5, 7, 8, 11, 12, 15, 16,

20

136 4 109 7

6, 9, 10, 13, 14, 17, 19, 22 al

25

24 2 18 5

Continued on the next page



Apéndice A. Attractors of the rule 126 226

Cuadro A.10 – Continued from previous page

No. of attractor Mass Period Num. of

leafs

Grade

18, 21 44 11 33 2

Cuadro A.10: Attractors for strings of length equal to 11

A.11. Attractors with length equal to 12

No. of attractor Mass Period Num. of

leafs

Grade

1 548 1 495 9

2, 3, 5, 7, 10, 15 284 14 242 6

4, 6, 9, 13, 17, 18 188 4 154 7

8, 11, 16 124 2 96 7

12, 14 168 36 120 3

19, 20 4 2 2 2

Cuadro A.11: Attractors for strings of length equal to 12

A.12. Attractors with length equal to 13

No. of attractor Mass Period Num. of

leafs

Grade

1 548 1 495 9

1 2160 1 1820 10

2 al 9, 11, 13 al 16 428 14 371 6

10, 12 208 39 143 3

17 al 29 4 2 2 2

Continued on the next page



Apéndice A. Attractors of the rule 126 227

Cuadro A.12 – Continued from previous page

No. of attractor Mass Period Num. of

leafs

Grade

Cuadro A.12: Attractors for strings of length equal to 13

A.13. Attractors with length equal to 14

No. of attractor Mass Period Num. of

leafs

Grade

1 11932 1 10327 19

2 al 5, 7, 9, 10 588 14 520 8

6, 8 84 14 56 3

11, 12, 16, 17, 20, 23, 26, 27,

31, 32, 35, 38, 41, 42

6 2 4 2

13, 14, 15, 18, 19, 21, 22, 24,

25, 28, 29, 30, 33, 34, 36, 37,

39, 40, 43, 44, 45

4 2 2 2

Cuadro A.13: Attractors for strings of length equal to 14

A.14. Attractors with length equal to 15

No. of attractor Mass Period Num. of

leafs

Grade

1 32448 1 28621 21

2, 12, 22, 32, 42 10 2 8 2

3 al 11, 13 al 21, 23 al 31, 33

al 41, 43 al 51

6 2 4 2

Continued on the next page



Apéndice A. Attractors of the rule 126 228

Cuadro A.14 – Continued from previous page

No. of attractor Mass Period Num. of

leafs

Grade

Cuadro A.14: Attractors for strings of length equal to 15



Apéndice A. Attractors of the rule 126 229

A.15. Attractors with length equal to 16

Figura A.1: Attractors with length equal to 16

No. of attractor Mass Period Num. of

leafs

Grade

1 31560 1 28290 22

2, 3, 4, 6, 8, 12, 16, 22 1968 14 1864 8

5, 7, 9, 13, 18, 25, 29, 34 904 14 784 13

10, 11, 14, 15, 17, 19, 20, 21,

23, 24, 27, 28, 30, 31, 33, 35

620 14 510 14

Continued on the next page



Apéndice A. Attractors of the rule 126 230

Cuadro A.15 – Continued from previous page

No. of attractor Mass Period Num. of

leafs

Grade

26, 32, 36, 37 180 6 160 4

38, 40, 42, 47, 48, 51, 54, 55,

58, 63, 64, 67, 70, 71, 74, 79

10 2 8 2

39, 41, 43 al 46, 49, 50, 53,

56, 57, 59 al 62, 65, 66, 69,

72, 73, 75 al 78

8 2 6 2

52, 68 4 2 2 2

Cuadro A.15: Attractors for strings of length equal to 16



Apéndice A. Attractors of the rule 126 231

A.16. Attractors with length equal to 17

Figura A.2: Attractors with length equal to 17

No. of attractor Mass Period Num. of

leafs

Grade

1 3572 1 3570 3

2 al 5, 7, 8, 11, 12, 16, 18,

24, 26, 35, 38, 46, 50, 60

2988 14 2806 9

Continued on the next page



Apéndice A. Attractors of the rule 126 232

Cuadro A.16 – Continued from previous page

No. of attractor Mass Period Num. of

leafs

Grade

6, 9, 10, 13, 14, 19, 21, 29,

31, 39, 40, 42, 48, 52, 59, 63,

64

1696 14 1511 13

15, 17, 20, 22, 23, 25, 27, 28,

30, 32, 33, 34, 36, 37, 41, 43,

44, 45, 47, 49, 53 al 58, 61,

62, 68 al 72

1284 14 1115 23

51, 65, 66, 67, 73, 75 al 86 232 6 211 4

87, 89 al 92, 94, 101 al 105,

108, 115 al 119

12 2 10 2

88, 93, 95 al 100, 106, 107,

109 al 114, 120

4 2 2 2

Cuadro A.16: Attractors for strings of length equal to 17



Apéndice A. Attractors of the rule 126 233

A.17. Attractors with length equal to 18

Figura A.3: Attractors with length equal to 18



Apéndice A. Attractors of the rule 126 234

A.18. Attractors with length equal to 19

Figura A.4: Attractors with length equal to 19



Apéndice A. Attractors of the rule 126 235

A.19. Attractors with length equal to 20

The following attractors show us a chaotic behavior and in different ways, some

of them have extensive gardens of Eden, while others have a large ring but small

gardens, and others only have a large number of leaves. They can be observed in

detail in the following figure:

Figura A.5: Attractors with length equal to 20



Apéndice A. Attractors of the rule 126 236

A.20. Attractors with length equal to 21

The same attractor, however the amount of Garden of Eden to reach it has

increased considerably. The attractors show chains that generate a pattern that will

repeat n times in certain steps of time, however, it may be that some attractors

contain others, as in this case this attractor to own more Garden of Eden than the

previous one we can conclude which contains it:

Figura A.6: Attractors with length equal to 21



Apéndice A. Attractors of the rule 126 237

A.21. Attractors with length equal to 22

As we can see in the following figure, the patterns are no longer so trivial and

allow us to better observe their cycles. The number of attractors has increased and

in turn the density in the leaves is such that we can only observe a uniform color,

but inside there are thousands of initial points towards an attractor state.

Figura A.7: Attractors with length equal to 22



Apéndice A. Attractors of the rule 126 238

A.22. Attractors with length equal to 23

Increasingly the number of attractors repeated but with greater Garden of Eden

or with greater cycle, but the same roads as the previous ones. This implies that the

greater the chain, it contains properties of the previous one:

Figura A.8: Attractors with length equal to 23



Apéndice A. Attractors of the rule 126 239

A.23. Attractors with length equal to 24

The chains of length 24 generate us too many patterns, in total there are 640

attractors within the possible combinations of chains, this is 224 possible states con-

tained in 640 graphs. However, some of these are repeated, so we have taken those

that are unique.

Figura A.9: Attractors with length equal to 24



Apéndice B

Collisions made

This appendix is dedicated to placing all collisions made, regardless of the collision

result, in order to show the reader how the various collisions were coded, as well as

the complete equation so that it is able to enter it into the simulator and check the

results shown in this document.

B.1. Binary collisions

B.1.1. Parameters to define the number of binary collisions

to be performed

To define the number of binary collisions to be performed we use set theory

to calculate the number of possible combinations among all the elements we have

identified. In the special case of binary collisions, the order does not matter how

the particles are entered, so we will use a combination without repetitions, and to

calculate we use the formula B.1:

C =

(
n

r

)
=

n!

r!(n− r)!
(B.1)

Where:

1. n is the number of total elements.

2. r is the amount of elements that we are going to take.

240



Apéndice B. Collisions made 241

In the case of binary collisions, we have 8 elements identified (6 gliders and 2

still-life, for more details consult the section 4.4), and we will take 2 (binary), so by

substituting we obtain that:

C =

(
n

r

)
=

8!

2!(8− 2)!
= 28

Therefore, we have 28 ways to combine the particles, which would be those shown

in the table B.1, however, of these 28 we can only perform 11 for two reasons:

1. The tile for filtering is different: Because we have not found a tile for

filtering that allows the coexistence of gliders that have a different tile for

filtering (3rd tile for filtering), the particles that have different tiles for filtering

are impossible to collide. Example of this are the particles g1 and g4, because

g1 has the tile for filtering 1(fp1) on the side where it would collide with g4,

which has the 2nd tile for filtering(fp2).

2. The particles are parallel: If the particles move in the same direction, they

will never collide because they have the same speed (see section 4.4 for more

information). Example of this are the gliders g6 and g1, although they have the

tile for filtering in common, they move to the right, so they will never collide,

another example is the still-life.

So in the table B.1 we will show the combination and if it can be done or not, in

case it is not possible one of the two reasons that have been explained will be given.

No. Combination Can it be realized? Reason

1 g1 ↔ g2 Yes

2 g1 ↔ g3 No They are parallel

3 g1 ↔ g4 No Different tile for filtering

4 g1 ↔ g5 No Different tile for filtering and

they are parallel

5 g1 ↔ g6 Yes

6 g1 ↔ s1 Yes

7 g1 ↔ s2 No Different tile for filtering

Continued on the next page



Apéndice B. Collisions made 242

Cuadro B.1 – Continued from previous page

No. Combination Can it be realized? Reason

8 g2 ↔ g4 No Different tile for filtering and

they are parallel

9 g2 ↔ g6 No They are parallel

10 g3 ↔ g2 No Different tile for filtering

11 g3 ↔ g4 Yes

12 g3 ↔ g5 No They are parallel

13 g3 ↔ g6 No Different tile for filtering

14 g3 ↔ s1 No Different tile for filtering

15 g3 ↔ s2 Yes

16 g4 ↔ g6 No They are parallel

17 g5 ↔ g2 Yes

18 g5 ↔ g4 No Different tile for filtering

19 g5 ↔ g6 Yes

20 g5 ↔ s1 Yes

21 g5 ↔ s2 No Different tile for filtering

22 s1 ↔ g2 Yes

23 s1 ↔ g4 No Different tile for filtering

24 s1 ↔ g6 Yes

25 s1 ↔ s2 No They are parallel

26 s2 ↔ g2 No Different tile for filtering

27 s2 ↔ g4 Yes

28 s2 ↔ g6 No Different tile for filtering

Cuadro B.1: Table of possible binary collisions

Thus, we have the total number of combinations that can be simulated, for the

case of binaries there are no more possible combinations. Now, for each combination

we must determine how many collisions are possible according to the phases that the

participating particles possess, for this we will use the formula B.2.



Apéndice B. Collisions made 243

Collisions = m ∗ n (B.2)

Where

1. m are the number of phases that the first particle that participates has.

2. n are the number of phases that the second particle that participates has.

So, let’s take as an example that we will collide g1 against g6, both particles have

5 different phases (to see the phases see 4.4), therefore we have:

Collisions = 5 ∗ 5 = 25

We can collide our system in 25 different ways, regardless of whether the result in

any collision is the same or some point of collision is not achievable. In the following

sections we will calculate for each of the 11 combinations the number of possible

collisions and show the results obtained, as well as the complete equation for its

simulation and verification, this equation will be formed by the structure shown in

the equation B.3

fpa(fb)↔ gc(fd)↔ se(f)h = K (B.3)

Where:

1. fpa(fb) will denote the tile for filtering numbered as a in the phase numbered

as b.

2. gc(fd) will denote the glider numbered as c in the phase numbered as d.

3. se(f)h will denote the still-life numbered as e in the phase numbered as h.

4. K will denote a combination of gliders and still-life, and it will have the same

notation described in the section 4.6.

Finally to divide the collisions, in each section we will place a subsection for

each phase of the particle that appears on the left side, in it we will exemplify its

interaction with all the phases of the particle on the right side.



Apéndice B. Collisions made 244

B.1.2. Restrictions by dynamics

There are some restrictions due to the dynamics of the tile for filtering at the

moment of making the collisions, and that they reduce the amount that are possible

to realize, these restrictions are:

1. The tile for filtering 2 only allows a collision by combination: This

restriction occurs if the elements that participate have the same phases as the

tile for filtering. For example, if we try to collide the glider g3 with the glider

g4, the theoretical amount of possible collisions are 5 * 5 = 25, however, these

gliders exist in the tile for filtering 2, which has 5 phases as well, so to maintain

the structures and coexist with the tile for filtering, we can only collide with

one way and that’s when the glider is in phase with the tile for filtering, so we

can only collide 5 shapes.

2. The tile for filtering 2 only allows two collisions per combination:

This case is similar to the first, but only applies to the still-life s2, since it

has 10 phases, the tile for filtering allows us to place it in two different ways.

An example is if we collide the glider g3 with the still-life s2, theoretically we

should give 5 * 10 = 50, however we can only design two collisions that are in

phase with the tile for filtering, so in reality we can only simulate 10 shapes.

B.1.3. g1 VS g2

To g1 against g2, we have both have 5 phases, so the number of possible collisions

we can perform are:

Collisions = 5 ∗ 5 = 25 (B.4)

g1 in the phase 1

In the figure B.1 we can observe the 5 possible collisions by keeping the glider g1

phase fixed using phase 1, and rotate the phase of the glider g2 in the 5 phases that

it has.

So the equations that we have as a result are:



Apéndice B. Collisions made 245

Figura B.1: The 5 different collisions between the glider g1 in phase 1 and the 5
phases that the glider has g2



Apéndice B. Collisions made 246

1. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g2(f1)↔ fp1(f1) = ∅

2. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g2(f2)↔ fp1(f2) = g1

3. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g2(f3)↔ fp1(f2) = g3 + g5

4. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g2(f4)↔ fp1(f1) = g6 + g4

5. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g2(f5)↔ fp1(f2) = g2

g1 in the phase 2

In the figure B.2 we can observe the 5 possible collisions by keeping the glider g1

phase fixed using phase 2, and rotate the phase of the glider g2 in the 5 phases that

it has.

Figura B.2: The 5 different collisions between the glider g1 in phase 2 and the 5
phases that the glider has g2

So the equations that we have as a result are:



Apéndice B. Collisions made 247

1. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g2(f1)↔ fp1(f1) = g2

2. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g2(f2)↔ fp1(f2) = ∅

3. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g2(f3)↔ fp1(f2) = g1

4. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g2(f4)↔ fp1(f1) = g3 + g5

5. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g2(f5)↔ fp1(f2) = g6 + g4

g1 in the phase 3

In the figure B.3 we can observe the 5 possible collisions by keeping the glider g1

phase fixed using phase 3, and rotate the phase of the glider g2 in the 5 phases that

it has.

Figura B.3: The 5 different collisions between the glider g1 in phase 3 and the 5
phases that the glider has g2

So the equations that we have as a result are:



Apéndice B. Collisions made 248

1. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g2(f1)↔ fp1(f1) = g6 + g4

2. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g2(f2)↔ fp1(f2) = g2

3. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g2(f3)↔ fp1(f2) = ∅

4. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g2(f4)↔ fp1(f1) = g1

5. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g2(f5)↔ fp1(f2) = g3 + g5

g1 in the phase 4

In the figure B.4 we can observe the 5 possible collisions by keeping the glider g1

phase fixed using phase 4, and rotate the phase of the glider g2 in the 5 phases that

it has.

Figura B.4: The 5 different collisions between the glider g1 in phase 4 and the 5
phases that the glider has g2

So the equations that we have as a result are:



Apéndice B. Collisions made 249

1. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g2(f1)↔ fp1(f1) = g3 + g5

2. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g2(f2)↔ fp1(f2) = g6 + g4

3. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g2(f3)↔ fp1(f2) = g2

4. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g2(f4)↔ fp1(f1) = ∅

5. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g2(f5)↔ fp1(f2) = g1

g1 in the phase 5

In the figure B.5 we can observe the 5 possible collisions by keeping the glider g1

phase fixed using phase 5, and rotate the phase of the glider g2 in the 5 phases that

it has.

Figura B.5: The 5 different collisions between the glider g1 in phase 5 and the 5
phases that the glider has g2

So the equations that we have as a result are:



Apéndice B. Collisions made 250

1. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g2(f1)↔ fp1(f1) = g1

2. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g2(f2)↔ fp1(f2) = g3 + g5

3. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g2(f3)↔ fp1(f2) = g6 + g4

4. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g2(f4)↔ fp1(f1) = g2

5. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g2(f5)↔ fp1(f2) = ∅

B.1.4. g1 VS g6

To g1 against g6, we have both have 5 phases, so the number of possible collisions

we can perform are:

Collisions = 5 ∗ 5 = 25 (B.5)

g1 in the phase 1

In the figure B.6 we can observe the 5 possible collisions by keeping the glider g1

phase fixed using phase 1, and rotate the phase of the glider g6 in the 5 phases that

it has.

So the equations that we have as a result are:

1. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g6(f1)↔ fp2(f1) = g6

2. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g6(f2)↔ fp2(f2) = g2
3

3. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g6(f3)↔ fp2(f3) = g2 + g6 + g5 + g3

4. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g6(f4)↔ fp2(f4) = g6 + g5 + g3

5. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ g6(f5)↔ fp2(f5) = g6



Apéndice B. Collisions made 251

Figura B.6: The 5 different collisions between the glider g1 in phase 1 and the 5
phases that the glider has g6



Apéndice B. Collisions made 252

Figura B.7: The 5 different collisions between the glider g1 in phase 2 and the 5
phases that the glider has g6



Apéndice B. Collisions made 253

g1 in the phase 2

In the figure B.7 we can observe the 5 possible collisions by keeping the glider g1

phase fixed using phase 2, and rotate the phase of the glider g6 in the 5 phases that

it has.

So the equations that we have as a result are:

1. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g6(f1)↔ fp2(f1) = g6

2. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g6(f2)↔ fp2(f2) = g6

3. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g6(f3)↔ fp2(f3) = g2
3

4. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g6(f4)↔ fp2(f4) = g2 + g6 + g5 + g3

5. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ g6(f5)↔ fp2(f5) = g6 + g5 + g3

g1 in the phase 3

In the figure B.8 we can observe the 5 possible collisions by keeping the glider g1

phase fixed using phase 3, and rotate the phase of the glider g6 in the 5 phases that

it has.

So the equations that we have as a result are:

1. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g6(f1)↔ fp2(f1) = g6 + g5 + g3

2. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g6(f2)↔ fp2(f2) = g6

3. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g6(f3)↔ fp2(f3) = g6

4. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g6(f4)↔ fp2(f4) = g2
3

5. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ g6(f5)↔ fp2(f5) = g2 + g6 + g5 + g3

g1 in the phase 4

In the figure B.9 we can observe the 5 possible collisions by keeping the glider g1

phase fixed using phase 4, and rotate the phase of the glider g6 in the 5 phases that

it has.

So the equations that we have as a result are:



Apéndice B. Collisions made 254

Figura B.8: The 5 different collisions between the glider g1 in phase 3 and the 5
phases that the glider has g6



Apéndice B. Collisions made 255

Figura B.9: The 5 different collisions between the glider g1 in phase 4 and the 5
phases that the glider has g6



Apéndice B. Collisions made 256

1. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g6(f1)↔ fp2(f1) = g2 + g6 + g5 + g3

2. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g6(f2)↔ fp2(f2) = g6 + g5 + g3

3. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g6(f3)↔ fp2(f3) = g6

4. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g6(f4)↔ fp2(f4) = g6

5. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ g6(f5)↔ fp2(f5) = g2
3

g1 in the phase 5

In the figure B.10 we can observe the 5 possible collisions by keeping the glider

g1 phase fixed using phase 5, and rotate the phase of the glider g6 in the 5 phases

that it has.

Figura B.10: The 5 different collisions between the glider g1 in phase 5 and the 5
phases that the glider has g6

So the equations that we have as a result are:



Apéndice B. Collisions made 257

1. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g6(f1)↔ fp2(f1) = g2
3

2. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g6(f2)↔ fp2(f2) = g2 + g6 + g5 + g3

3. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g6(f3)↔ fp2(f3) = g6 + g5 + g3

4. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g6(f4)↔ fp2(f4) = g6

5. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ g6(f5)↔ fp2(f5) = g6

B.1.5. g1 VS s1

To g1 against s1, we have that g1 has 5 phases, while s1 only has 2, so the number

of possible collisions are:

Collisions = 5 ∗ 2 = 10 (B.6)

g1 in the phase 1

In the figure B.11 we can observe the 5 possible collisions by keeping the glider

g1 phase fixed using phase 1, and rotate the phase of the still-life s1 in the 2 phases

that it has.

Figura B.11: The 5 different collisions between the glider g1 in phase 1 and the 2
phases that the still-life s1 has

So the equations that we have as a result are:



Apéndice B. Collisions made 258

1. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ s1(f1)↔ fp1(f1) = s1

2. fp1(f1)↔ g1(f1)↔ fp1(f1)↔ s1(f2)↔ fp1(f2) = s1

g1 in the phase 2

in the figure B.12 we can observe the 5 possible collisions by keeping the glider

g1 phase fixed using phase 2, and rotate the phase of the still-life s1 in the 2 phases

that it has.

Figura B.12: The 5 different collisions between the glider g1 in phase 2 and the 2
phases that the still-life s1 has

So the equations that we have as a result are:

1. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ s1(f1)↔ fp1(f1) = s1

2. fp1(f2)↔ g1(f2)↔ fp1(f2)↔ s1(f2)↔ fp1(f2) = s1

g1 in the phase 3

In the figure B.13 we can observe the 5 possible collisions by keeping the glider

g1 phase fixed using phase 3, and rotate the phase of the still-life s1 in the 2 phases

that it has.

So the equations that we have as a result are:

1. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ s1(f1)↔ fp1(f1) = s1

2. fp1(f2)↔ g1(f3)↔ fp1(f1)↔ s1(f2)↔ fp1(f2) = s1



Apéndice B. Collisions made 259

Figura B.13: The 5 different collisions between the glider g1 in phase 3 and the 2
phases that the still-life s1 has

g1 in the phase 4

In the figure B.14 we can observe the 5 possible collisions by keeping the glider

g1 phase fixed using phase 4, and rotate the phase of the still-life s1 in the 2 phases

that it has.

Figura B.14: The 5 different collisions between the glider g1 in phase 4 and the 2
phases that the still-life s1 has

So the equations that we have as a result are:

1. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ s1(f1)↔ fp1(f1) = s1

2. fp1(f1)↔ g1(f4)↔ fp1(f2)↔ s1(f2)↔ fp1(f2) = s1



Apéndice B. Collisions made 260

g1 in the phase 5

In the figure B.15 we can observe the 5 possible collisions by keeping the glider

g1 phase fixed using phase 5, and rotate the phase of the still-life s1 in the 2 phases

that it has.

Figura B.15: The 5 different collisions between the glider g1 in phase 5 and the 2
phases that the still-life s1 has

So the equations that we have as a result are:

1. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ s1(f1)↔ fp1(f1) = s1

2. fp1(f2)↔ g1(f5)↔ fp1(f1)↔ s1(f2)↔ fp1(f2) = s1

B.1.6. g3 VS g4

To g3 against g4, we both have 5 phases, however it is necessary to apply the

restriction criterion number 1 indicated in B.1.2, so the possible collisions are:

Theoretical collisions = 5 ∗ 5 = 25

Real collisions = 5 ∗ 1 = 5
(B.7)

g3 in the phase 1

In the figure B.16 we can observe the only possible collision by keeping the glider

g3 phase fixed using phase 1, and use phase 1 of the glider g4:



Apéndice B. Collisions made 261

Figura B.16: The possible collision between the glider g3 in phase 1 and the glider
g4 in phase 1

So, the equation we have as a result is:

1. fp1(f1)↔ g3(f1)↔ fp2(f1)↔ g4(f1)↔ fp1(f1) = s1

g3 in the phase 2

En la figura B.17 we can observe the only possible collision by keeping the glider

g3 phase fixed using phase 2, and use phase 2 of the glider g4:

So, the equation we have as a result is:

1. fp1(f2)↔ g3(f2)↔ fp2(f2)↔ g4(f2)↔ fp1(f2) = s1

g3 in the phase 3

In the figure B.18 we can observe the only possible collision by keeping the glider

g3 phase fixed using phase 3, and use phase 3 of the glider g4:

So, the equation we have as a result is:

1. fp1(f2)↔ g3(f3)↔ fp2(f3)↔ g4(f3)↔ fp1(f2) = s1



Apéndice B. Collisions made 262

Figura B.17: The possible collision between the glider g3 in phase 2 and the glider
g4 in phase 2

Figura B.18: The possible collision between the glider g3 in phase 3 and the glider
g4 in phase 3



Apéndice B. Collisions made 263

g3 in the phase 4

In the figure B.19 we can observe the only possible collision by keeping the glider

g3 phase fixed using phase 4, and use phase 4 of the glider g4:

Figura B.19: The possible collision between the glider g3 in phase 4 and the glider
g4 in phase 4

So, the equation we have as a result is:

1. fp1(f1)↔ g3(f4)↔ fp2(f4)↔ g4(f4)↔ fp1(f1) = s1

g3 in the phase 5

In the figure B.20 we can observe the only possible collision by keeping the glider

g3 phase fixed using phase 5, and use phase 5 of the glider g4:

So, the equation we have as a result is:

1. fp1(f2)↔ g3(f5)↔ fp2(f5)↔ g4(f5)↔ fp1(f2) = s1

B.1.7. g3 VS s2

To g3 against s2, we have that g3 has 5 phases and s2 has 10, however criteria 1

and 2 of the section B.1.2 apply, so the number of collisions that can be made are:



Apéndice B. Collisions made 264

Figura B.20: The possible collision between the glider g3 in phase 5 and the glider
g4 in phase 5

Theoretical collisions = 5 ∗ 10 = 50

Real collisions = 5 ∗ 2 = 10
(B.8)

g3 in the phase 1

In the figure B.21 we can observe the two possible collisions by keeping the glider

g3 phase fixed using phase 1, and use phase 1 and 6 of the still-life s2:

So, the equations we have as a result are:

1. fp1(f1)↔ g3(f1)↔ fp2(f1)↔ s2(f1)↔ fp2(f1) = g6

2. fp1(f1)↔ g3(f1)↔ fp2(f1)↔ s2(f6)↔ fp2(f1) = g6

g3 in the phase 2

In the figure B.22 we can observe the two possible collisions by keeping the glider

g3 phase fixed using phase 2, and use phase 2 and 7 of the still-life s2:

So, the equations we have as a result are:



Apéndice B. Collisions made 265

Figura B.21: The possible collisions between the glider g3 in phase 1 and the still-life
s2 in phases 1 and 6

Figura B.22: The possible collisions between the glider g3 in phase 2 and the still-life
s2 in phases 2 and 7



Apéndice B. Collisions made 266

1. fp1(f2)↔ g3(f2)↔ fp2(f2)↔ s2(f2)↔ fp2(f2) = g6

2. fp1(f2)↔ g3(f2)↔ fp2(f2)↔ s2(f7)↔ fp2(f2) = g6

g3 in the phase 3

In the figure B.23 we can observe the two possible collisions by keeping the glider

g3 phase fixed using phase 3, and use phase 3 and 8 of the still-life s2:

Figura B.23: The possible collisions between the glider g3 in phase 3 and the still-life
s2 in phases 3 and 8

So, the equations we have as a result are:

1. fp1(f2)↔ g3(f3)↔ fp2(f3)↔ s2(f3)↔ fp2(f3) = g6

2. fp1(f2)↔ g3(f3)↔ fp2(f3)↔ s2(f8)↔ fp2(f3) = g6

g3 in the phase 4

In the figure B.24 we can observe the two possible collisions by keeping the glider

g3 phase fixed using phase 4, and use phase 4 and 9 of the still-life s2:

So, the equations we have as a result are:

1. fp1(f1)↔ g3(f4)↔ fp2(f4)↔ s2(f4)↔ fp2(f4) = g6

2. fp1(f1)↔ g3(f4)↔ fp2(f4)↔ s2(f9)↔ fp2(f4) = g6



Apéndice B. Collisions made 267

Figura B.24: The possible collisions between the glider g3 in phase 4 and the still-life
s2 in phases 4 and 9

g3 in the phase 5

In the figure B.25 we can observe the two possible collisions by keeping the glider

g3 phase fixed using phase 5, and use phase 5 and 10 of the still-life s2:

Figura B.25: The possible collisions between the glider g3 in phase 5 and the still-life
s2 in phases 5 and 10

So, the equations we have as a result are:



Apéndice B. Collisions made 268

1. fp1(f2)↔ g3(f5)↔ fp2(f5)↔ s2(f5)↔ fp2(f5) = g6

2. fp1(f2)↔ g3(f5)↔ fp2(f5)↔ s2(f10)↔ fp2(f5) = g6

B.1.8. g5 VS g2

To g5 against g2, we have both have 5 phases, so the number of collisions that we

can perform are:

Collisions = 5 ∗ 5 = 25 (B.9)

g5 in the phase 1

In the figure B.26 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 1, and rotate the phase of the glider g2 in the 5 phases

that it has.

So the equations that we have as a result are:

1. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g2(f1)↔ fp1(f1) = g5

2. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g2(f2)↔ fp1(f2) = g5

3. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g2(f3)↔ fp1(f2) = g4 + g6 + g5

4. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g2(f4)↔ fp1(f1) = g4 + g6 + g5 + g2

5. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g2(f5)↔ fp1(f2) = g2
4

g5 in the phase 2

In the figure B.27 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 2, and rotate the phase of the glider g2 in the 5 phases

that it has.

So the equations that we have as a result are:

1. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g2(f1)↔ fp1(f1) = g2
4



Apéndice B. Collisions made 269

Figura B.26: The 5 different collisions between the glider g5 in phase 1 and the 5
phases that the glider g2 has



Apéndice B. Collisions made 270

Figura B.27: The 5 different collisions between the glider g5 in phase 2 and the 5
phases that the glider g2 has



Apéndice B. Collisions made 271

2. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g2(f2)↔ fp1(f2) = g5

3. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g2(f3)↔ fp1(f2) = g5

4. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g2(f4)↔ fp1(f1) = g4 + g6 + g5

5. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g2(f5)↔ fp1(f2) = g4 + g6 + g5 + g2

g5 in the phase 3

In the figure B.28 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 3, and rotate the phase of the glider g2 in the 5 phases

that it has.

Figura B.28: The 5 different collisions between the glider g5 in phase 3 and the 5
phases that the glider g2 has

So the equations that we have as a result are:

1. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g2(f1)↔ fp1(f1) = g4 + g6 + g5 + g2



Apéndice B. Collisions made 272

2. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g2(f2)↔ fp1(f2) = g2
4

3. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g2(f3)↔ fp1(f2) = g5

4. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g2(f4)↔ fp1(f1) = g5

5. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g2(f5)↔ fp1(f2) = g4 + g6 + g5

g5 in the phase 4

In the figure B.29 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 4, and rotate the phase of the glider g2 in the 5 phases

that it has.

Figura B.29: The 5 different collisions between the glider g5 in phase 4 and the 5
phases that the glider g2 has

So the equations that we have as a result are:

1. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g2(f1)↔ fp1(f1) = g4 + g6 + g5



Apéndice B. Collisions made 273

2. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g2(f2)↔ fp1(f2) = g4 + g6 + g5 + g2

3. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g2(f3)↔ fp1(f2) = g2
4

4. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g2(f4)↔ fp1(f1) = g5

5. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g2(f5)↔ fp1(f2) = g5

g5 in the phase 5

In the figure B.30 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 5, and rotate the phase of the glider g2 in the 5 phases

that it has.

Figura B.30: The 5 different collisions between the glider g5 in phase 5 and the 5
phases that the glider g2 has

So the equations that we have as a result are:

1. fp2(f5)↔ g5(f5)↔ fp1(f2)↔ g2(f1)↔ fp1(f1) = g5



Apéndice B. Collisions made 274

2. fp2(f5)↔ g5(f5)↔ fp1(f2)↔ g2(f2)↔ fp1(f2) = g4 + g6 + g5

3. fp2(f5)↔ g5(f5)↔ fp1(f2)↔ g2(f3)↔ fp1(f2) = g4 + g6 + g5 + g2

4. fp2(f5)↔ g5(f5)↔ fp1(f2)↔ g2(f4)↔ fp1(f1) = g2
4

5. fp2(f5)↔ g5(f5)↔ fp1(f2)↔ g2(f5)↔ fp1(f2) = g5

B.1.9. g5 VS g6

To g5 against g6, we have both have 5 phases, so the number of collisions that we

can perform are:

Collisions = 5 ∗ 5 = 25 (B.10)

g5 in the phase 1

In the figure B.31 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 1, and rotate the phase of the glider g6 in the 5 phases

that it has.

So the equations that we have as a result are:

1. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g6(f1)↔ fp2(f1) = s2

2. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g6(f2)↔ fp2(f2) = g5g3

3. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g6(f3)↔ fp2(f3) = gun3

4. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g6(f4)↔ fp2(f4) = gun4

5. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ g6(f5)↔ fp2(f5) = g4g6

g5 in the phase 2

In the figure B.32 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 2, and rotate the phase of the glider g6 in the 5 phases

that it has.

So the equations that we have as a result are:



Apéndice B. Collisions made 275

Figura B.31: The 5 different collisions between the glider g5 in phase 1 and the 5
phases that the glider g6 has



Apéndice B. Collisions made 276

Figura B.32: The 5 different collisions between the glider g5 in phase 2 and the 5
phases that the glider g6 has



Apéndice B. Collisions made 277

1. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g6(f1)↔ fp2(f1) = g4g6

2. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g6(f2)↔ fp2(f2) = s2

3. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g6(f3)↔ fp2(f3) = g5g3

4. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g6(f4)↔ fp2(f4) = gun3

5. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ g6(f5)↔ fp2(f5) = gun4

g5 in the phase 3

In the figure B.33 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 3, and rotate the phase of the glider g6 in the 5 phases

that it has.

So the equations that we have as a result are:

1. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g6(f1)↔ fp2(f1) = gun4

2. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g6(f2)↔ fp2(f2) = g4g6

3. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g6(f3)↔ fp2(f3) = s2

4. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g6(f4)↔ fp2(f4) = g5g3

5. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ g6(f5)↔ fp2(f5) = gun3

g5 in the phase 4

In the figure B.34 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 4, and rotate the phase of the glider g6 in the 5 phases

that it has.

So the equations that we have as a result are:

1. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g6(f1)↔ fp2(f1) = gun3

2. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g6(f2)↔ fp2(f2) = gun4

3. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g6(f3)↔ fp2(f3) = g4g6



Apéndice B. Collisions made 278

Figura B.33: The 5 different collisions between the glider g5 in phase 3 and the 5
phases that the glider g6 has



Apéndice B. Collisions made 279

Figura B.34: The 5 different collisions between the glider g5 in phase 4 and the 5
phases that the glider g6 has



Apéndice B. Collisions made 280

4. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g6(f4)↔ fp2(f4) = s2

5. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ g6(f5)↔ fp2(f5) = g5g3

g5 in the phase 5

In the figure B.35 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 5, and rotate the phase of the glider g6 in the 5 phases

that it has.

Figura B.35: The 5 different collisions between the glider g5 in phase 5 and the 5
phases that the glider g6 has

So the equations that we have as a result are:

1. fp2(f5)↔ g5(f5)↔ fp1(f1)↔ g6(f1)↔ fp2(f1) = g5g3

2. fp2(f5)↔ g5(f5)↔ fp1(f1)↔ g6(f2)↔ fp2(f2) = gun3



Apéndice B. Collisions made 281

3. fp2(f5)↔ g5(f5)↔ fp1(f1)↔ g6(f3)↔ fp2(f3) = gun4

4. fp2(f5)↔ g5(f5)↔ fp1(f1)↔ g6(f4)↔ fp2(f4) = g4g6

5. fp2(f5)↔ g5(f5)↔ fp1(f1)↔ g6(f5)↔ fp2(f5) = s2

B.1.10. g5 VS s1

To g5 against s1, we have that the glider g5 has 5 phases and the still-life s1 has

2, so the number of collisions we can make are:

Collisions = 5 ∗ 2 = 10 (B.11)

g5 in the phase 1

In the figure B.36 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 1, and rotate the still-life s1 phase in the 2 phases that it

has.

Figura B.36: The 5 different collisions between the glider g5 in phase 1 and the 2
phases of the still-life s1

So the equations that we have as a result are:



Apéndice B. Collisions made 282

1. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ s1(f1)↔ fp1(f1) = g4

2. fp2(f1)↔ g5(f1)↔ fp1(f1)↔ s1(f2)↔ fp1(f2) = g4

g5 in the phase 2

In the figure B.37 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 2, and rotate the still-life s1 phase in the 2 phases that it

has.

Figura B.37: The 5 different collisions between the glider g5 in phase 2 and the 2
phases of the still-life s1

So the equations that we have as a result are:

1. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ s1(f1)↔ fp1(f1) = g4

2. fp2(f2)↔ g5(f2)↔ fp1(f2)↔ s1(f2)↔ fp1(f2) = g4

g5 in the phase 3

In the figure B.38 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 3, and rotate the still-life s1 phase in the 2 phases that it

has.

So the equations that we have as a result are:



Apéndice B. Collisions made 283

Figura B.38: The 5 different collisions between the glider g5 in phase 3 and the 2
phases of the still-life s1

1. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ s1(f1)↔ fp1(f1) = g4

2. fp2(f3)↔ g5(f3)↔ fp1(f1)↔ s1(f2)↔ fp1(f2) = g4

g5 in the phase 4

In the figure B.39 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 4, and rotate the still-life s1 phase in the 2 phases that it

has.

So the equations that we have as a result are:

1. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ s1(f1)↔ fp1(f1) = g4

2. fp2(f4)↔ g5(f4)↔ fp1(f2)↔ s1(f2)↔ fp1(f2) = g4

g5 in the phase 5

In the figure B.40 we can observe the 5 possible collisions by keeping the glider

g5 phase fixed using phase 5, and rotate the still-life s1 phase in the 2 phases that it

has.

So the equations that we have as a result are:



Apéndice B. Collisions made 284

Figura B.39: The 5 different collisions between the glider g5 in phase 4 and the 2
phases of the still-life s1

Figura B.40: The 5 different collisions between the glider g5 in phase 5 and the 2
phases of the still-life s1



Apéndice B. Collisions made 285

1. fp2(f5)↔ g5(f5)↔ fp1(f1)↔ s1(f1)↔ fp1(f1) = g4

2. fp2(f5)↔ g5(f5)↔ fp1(f1)↔ s1(f2)↔ fp1(f2) = g4

B.1.11. s1 VS g2

To s1 against g2, we have that the still-life s1 has 2 phases and the glider g2 has

5, so the number of collisions we can make are:

Collisions = 2 ∗ 5 = 10 (B.12)

s1 In the phase 1

In the figure B.41 we can observe the 5 possible collisions by keeping the still-life

s1 phase fixed using phase 1, and rotate the phase of the glider g2 in the 5 phases

that it has.

So the equations that we have as a result are:

1. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g2(f1)↔ fp1(f1) = s1

2. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g2(f2)↔ fp1(f2) = s1

3. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g2(f3)↔ fp1(f2) = s1

4. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g2(f4)↔ fp1(f1) = s1

5. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g2(f5)↔ fp1(f2) = s1

s1 in the phase 2

In the figure B.42 we can observe the 5 possible collisions by keeping the still-life

s1 phase fixed using phase 2, and rotate the phase of the glider g2 in the 5 phases

that it has.

So the equations that we have as a result are:

1. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g2(f1)↔ fp1(f1) = s1



Apéndice B. Collisions made 286

Figura B.41: The 5 different collisions between the still-life s1 in phase 1 and the 5
phases that the glider g2 has



Apéndice B. Collisions made 287

Figura B.42: The 5 different collisions between the still-life s1 in phase 2 and the 5
phases that the glider g2 has



Apéndice B. Collisions made 288

2. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g2(f2)↔ fp1(f2) = s1

3. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g2(f3)↔ fp1(f2) = s1

4. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g2(f4)↔ fp1(f1) = s1

5. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g2(f5)↔ fp1(f2) = s1

B.1.12. s1 VS g6

To s1 against g6, we have the still-life s1 has 2 phases and the glider g6 has 5, so

the number of collisions we can make are:

Collisions = 2 ∗ 5 = 10 (B.13)

s1 in the phase 1

In the figure B.43 we can observe the 5 possible collisions by keeping the still-life

s1 phase fixed using phase 1, and rotate the phase of the glider g6 in the 5 phases

that it has.

So the equations that we have as a result are:

1. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g6(f1)↔ fp2(f1) = g3

2. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g6(f2)↔ fp2(f2) = g3

3. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g6(f3)↔ fp2(f3) = g3

4. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g6(f4)↔ fp2(f4) = g3

5. fp1(f2)↔ s1(f1)↔ fp1(f2)↔ g6(f5)↔ fp2(f5) = g3

s1 in the phase 2

In the figure B.44 we can observe the 5 possible collisions by keeping the still-life

s1 phase fixed using phase 2, and rotate the phase of the glider g6 in the 5 phases

that it has.

So the equations that we have as a result are:



Apéndice B. Collisions made 289

Figura B.43: The 5 different collisions between the still-life s1 in phase 1 and the 5
phases that the glider g6 has



Apéndice B. Collisions made 290

Figura B.44: The 5 different collisions between the still-life s1 in phase 2 and the 5
phases that the glider g6 has



Apéndice B. Collisions made 291

1. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g6(f1)↔ fp2(f1) = g3

2. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g6(f2)↔ fp2(f2) = g3

3. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g6(f3)↔ fp2(f3) = g3

4. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g6(f4)↔ fp2(f4) = g3

5. fp1(f1)↔ s1(f2)↔ fp1(f1)↔ g6(f5)↔ fp2(f5) = g3

B.1.13. s2 VS g4

To s2 against g4, we have the still-life s2 has 10 phases and the glider g4 has 5,

but we need to apply the restriction number 1 mentioned in B.1.2 to the glider g4,

so we can only collide at one point, obtaining as totals:

Collisions = 10 ∗ 1 = 10 (B.14)

s2 in the phase 1

In the figure B.45 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 1, and the glider g4 in phase 1.

So the equation that we have as a result is:

1. fp2(f1)↔ s2(f1)↔ fp2(f1)↔ g4(f1)↔ fp1(f2) = g5

s2 in the phase 2

In the figure B.46 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 2, and the glider g4 in phase 2.

So the equation that we have as a result is:

1. fp2(f2)↔ s2(f2)↔ fp2(f2)↔ g4(f2)↔ fp1(f1) = g5



Apéndice B. Collisions made 292

Figura B.45: The collision between the still-life s2 in phase 1 and the glider g4 in
phase 1

Figura B.46: The collision between the still-life s2 in phase 2 and the glider g4 in
phase 2



Apéndice B. Collisions made 293

Figura B.47: The collision between the still-life s2 in phase 3 and the glider g4 in
phase 3

s2 in the phase 3

In the figure B.47 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 3, and the glider g4 in phase 3.

So the equation that we have as a result is:

1. fp2(f3)↔ s2(f3)↔ fp2(f3)↔ g4(f3)↔ fp1(f2) = g5

s2 in the phase 4

In the figure B.48 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 4, and the glider g4 in phase 4.

So the equation that we have as a result is:

1. fp2(f4)↔ s2(f4)↔ fp2(f4)↔ g4(f4)↔ fp1(f1) = g5



Apéndice B. Collisions made 294

Figura B.48: The collision between the still-life s2 in phase 4 and the glider g4 in
phase 4

s2 in the phase 5

In the figure B.49 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 5, and the glider g4 in phase 5.

So the equation that we have as a result is:

1. fp2(f5)↔ s2(f5)↔ fp2(f5)↔ g4(f5)↔ fp1(f2) = g5

s2 in the phase 6

In the figure B.50 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 6, and the glider g4 in phase 1.

So the equation that we have as a result is:

1. fp2(f1)↔ s2(f6)↔ fp2(f1)↔ g4(f1)↔ fp1(f1) = g5



Apéndice B. Collisions made 295

Figura B.49: The collision between the still-life s2 in phase 5 and the glider g4 in
phase 5

Figura B.50: The collision between the still-life s2 in phase 6 and the glider g4 in
phase 1



Apéndice B. Collisions made 296

s2 in the phase 7

In the figure B.51 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 7, and the glider g4 in phase 2.

Figura B.51: The collision between the still-life s2 in phase 7 and the glider g4 in
phase 2

So the equation that we have as a result is:

1. fp2(f2)↔ s2(f7)↔ fp2(f2)↔ g4(f2)↔ fp1(f2) = g5

s2 in the phase 8

In the figure B.52 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 8, and the glider g4 in phase 3.

So the equation that we have as a result is:

1. fp2(f3)↔ s2(f8)↔ fp2(f3)↔ g4(f3)↔ fp1(f2) = g5



Apéndice B. Collisions made 297

Figura B.52: The collision between the still-life s2 in phase 8 and the glider g4 in
phase 3

s2 in the phase 9

In the figure B.53 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 9, and the glider g4 in phase 4.

So the equation that we have as a result is:

1. fp2(f4)↔ s2(f9)↔ fp2(f4)↔ g4(f4)↔ fp1(f1) = g5

s2 in the phase 10

In the figure B.54 we can observe the possible collision by keeping the still-life s2

phase fixed using phase 10, and the glider g4 in phase 5.

So the equation that we have as a result is:

1. fp2(f5)↔ s2(f10)↔ fp2(f5)↔ g4(f5)↔ fp1(f2) = g5



Apéndice B. Collisions made 298

Figura B.53: The collision between the still-life s2 in phase 9 and the glider g4 in
phase 4

Figura B.54: The collision between the still-life s2 in phase 10 and the glider g4 in
phase 5


	Introduction
	Fundamental Concepts
	Dynamic Systems
	Definition of a Dynamic System
	Classification of Systems
	Description of the behavior of the Systems
	Quantitative analysis of a Dynamic System

	Cellular Automata
	Definition
	Elements that make up a CA
	Extension of the CA: functions with memory

	Elementary Cellular Automata
	Background
	Definition
	Properties
	Wolfram Classification

	Tools used in the analysis of the ECA
	Lyapunov Exponent for ECA
	Wuensche Classification
	The De bruijn Diagrams

	Chaotic Systems
	Definition of a chaotic system
	Properties
	Identification of a Chaotic System

	Complex Systems
	Definition of a Complex System
	Properties
	Identification of a Complex System


	Rule 126 of ACE
	Background
	Definition of rule 126
	Propiedades
	Classification of rule 126
	The De Bruijn Diagram for rule 126
	Wuensche classification for rule 126

	Rule 126 with memory of 4 generations
	Background
	Rule 126 with memory: majority function
	Properties
	Elements within the evolution space
	Tiles for filtering
	Gliders
	Still-life
	Gliders-gun

	Points of collision of the elements within the space of evolutions
	Collision points of the gliders
	Collision points of the still-life

	Collisions between the elements within the evolution space
	Binary collisions
	Ternary collisions
	Colisiones de orden superior


	Collision-based computing
	Background
	Definition
	Main characteristics
	Objectives

	Determining the computing power of a system
	Chomsky Hierarchy
	Logic Gates


	Constructions based on collisions
	Objects of rule 126 with memory
	Eaters
	Black-holes
	Solitons

	Computability of the rule
	Regular languages
	Context-Free Grammars
	Logic gates
	Rule computing power


	SOL: Logical Operations Simulator
	Requirements
	Functional requirements
	Non functional requirements

	System's architecture
	System's modules
	Elemental Cellular Automatons
	Rule 126 with memory
	Logical Operations

	Technologies to use
	System tests
	Elemental Cellular Automatons
	Rule 126 with memory
	Logical operations


	Final results
	Celebration of late. Prof. Harold V. McIntosh Achievements 2017
	The Ninth International Conference on Complex Systems 2018

	Conclusions
	Future Work
	Bibliografía
	Glossary
	Attractors of the rule 126
	Attractors with length equal to 2
	Attractors with length equal to 3
	Attractors with length equal to 4
	Attractors with length equal to 5
	Attractors with length equal to 6
	Attractors with length equal to 7
	Attractors with length equal to 8
	Attractors with length equal to 9
	Attractors with length equal to 10
	Attractors with length equal to 11
	Attractors with length equal to 12
	Attractors with length equal to 13
	Attractors with length equal to 14
	Attractors with length equal to 15
	Attractors with length equal to 16
	Attractors with length equal to 17
	Attractors with length equal to 18
	Attractors with length equal to 19
	Attractors with length equal to 20
	Attractors with length equal to 21
	Attractors with length equal to 22
	Attractors with length equal to 23
	Attractors with length equal to 24

	Collisions made
	Binary collisions
	Parameters to define the number of binary collisions to be performed
	Restrictions by dynamics
	g1 VS g2
	g1 VS g6
	g1 VS s1
	g3 VS g4
	g3 VS s2
	g5 VS g2
	g5 VS g6
	g5 VS s1
	s1 VS g2
	s1 VS g6
	s2 VS g4



