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Abstract

We shall analyze the dynamical properties that we can find in reversible one dimensional cellular
automata. We take the configuration set of cellular automata as a topological space based on
cylinder sets and mappings among them. We will take one dimensional cellular automata with
neighborhood radius size 2 for representing the whole set of reversible one dimensional cellular
automata. Using also the characterization of reversible cellular automata with block permuta-
tions, we will expose some matricial methods for detecting the existence of fixed and periodic
points; topologically transitive points; topologically ergodic sets, mixing sets and non-wandering
sets. Finally, based on periodic behavior, we will be able to classify dynamical behavior of re-
versible one dimensional cellular automata.

Keywords: Reversible one dimensional cellular automata, cylinder set, block permutations,
dynamical systems.
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1 Introduction

One dimensional cellular automata are discrete dynamical systems characterized by simple inter-
action of their parts, but at the same time, these systems are able to produce very complex global
behavior. The cellular automata theory has three important periods; the concept rises with the
work developed by John von Neumann in the middle of the 50’s [vN66], he used these systems to
demonstrate the possibility of constructing self-reproducing systems. Later, in the beginning of the
70’s, we have the work developed by John H. Conway [Gar70], standing out his cellular automata
in two dimensions called “Life” which has been widely studied due to the simplicity of its behavior
but its capacity to produce complex global behavior. Finally, in the middle of the 80’s, Stephen
Wolfram [Wol86] was the first in analyze the behavior of the whole set of one dimensional cellular
automata with 2 states and neighborhood radius equal 1.

Another important theory in relationship with cellular automata is the study in dynamical systems.
The work developed by Henry Poncairé and George Birkhoff among others, had a very strong
influence in the work developed by Gustav A. Hedlund [Hed69] at the ends of the 60’s. In this
paper, Hedlund analyzes in some way the dynamical behavior of cellular automata. In this sense,
one result in the work of Wolfram [Wol86] is give the following classification of cellular automata
according to their dynamical behavior:

Class I.- Cellular automata which tend to a fixed point.

Class II.- Cellular automata which tend to recurrent points.

Class III.- Cellular automata with chaotic behavior.

Class IV.- Cellular automata with complex behavior.

However, this classification has the failure that for a given cellular automaton, we can’t know which
class belongs to, until we observe its behavior. This is a strong problem in the study of dynamical
comportment of one dimensional cellular automata since there is not a general characterization of
their behavior. Nevertheless, in the case of reversible one dimensional cellular automata we have
such a characterization due to the work developed by Jarkko Kari [Kar96]. He explains that the
behavior of reversible one dimensional cellular automata is given by block permutations and shifts.

Taking advantage of this characterization, we shall analyze the dynamical behavior in reversible
one dimensional cellular automata.

The work has the following organization, section 2 gives the basic concepts about one dimensional
cellular automata, explains that every one dimensional cellular automaton can be simulated by
another one dimensional cellular automaton with neighborhood size equal 2 and introduces the
cylinder sets for handling the configuration space of cellular automata. Section 3 explains the
behavior of reversible one dimensional cellular automata using block permutations and shifts, this is
done for cellular automata with neighborhood size equal 2 because the other cases can be simulated
with this kind of automata. Section 4 gives the basic concepts in dynamical systems that we use in
this study. Section 5 shows the dynamical behavior of reversible one dimensional cellular automata



using the cylinder sets. We will see that we can use block permutations to give matrix methods that
detect the existence of fixed, periodic and transitive points, and ergodic, mixing and non-wandering
cylinder sets. Section 6 takes the matrix procedure for detecting periodic points and depending on
the equivalence classes that they form with this procedure we can classify the dynamical behavior of
reversible one dimensional cellular automata . Section 7 gives some examples of the functionality of
this methods in (4, 1/2) reversible one dimensional cellular automata and section 8 has conclusions
of this work. Trying to do more clear the exposition and the understanding of this work, section
9 presents a list of symbols commonly used in the development of this paper, making easier their
reference.



2 One dimensional cellular automata concepts

In this section we shall view three important topics, the basic concepts of one dimensional cellular
automata, the possibility of simulating any one dimensional cellular automaton with another cellular
automaton with neighborhood size equal 2, and the specification of cylinder sets.

2.1 One dimensional cellular automata

A one dimensional cellular automaton is formed by a set I of states, a sequence ¢ of cells, where
every cell takes one value of the set K of states. The cardinality of the set K is represented by
k, and the sequence ¢ will be called a configuration of the automaton. The set of all the possible
configurations is called the configuration set C. If the configurations are infinite in both sides, then
we can index every cell with an element of the set Z of integers.

For n € Z*, notation K™ represents the set of sequences formed with states of the set K with
length n. In this way, notation K* represents the set of all the finite sequences of states belonging
to the set K.

We shall analyze the dynamical behavior given by mappings among configurations of the set C, that
is, the kind of trajectories that are formed passing from a given configuration to another applying
a given mapping. However, we don’t want to analyze all kind of mappings among configurations
but only those mappings produced by a local mapping among the cells in a configuration. Given
a cell in a configuration ¢, this cell evolves to a new cell depending on its current state and the
state of its r neighbors at each side. Thus, r defines a neighborhood radius, and each cell and its r
neighbors in both sides form a neighborhood with 2r + 1 cells. We will use the notation (k,r) for
representing a one dimensional cellular automata with &k states and neighborhood radius r.

Each neighborhood form a new cell and this process is repeated over all the cells in a configuration.
The mapping ¢ : K> — K that exists from neighborhoods to states is named an evolution rule
of a one dimensional cellular automaton.

The evolution rule ¢ acts over all the cells in a configuration ¢ forming a new configuration ¢’ that
belongs to the configuration set C'. Thus, the evolution rule ¢ induces a global mapping ® among
the configurations of the configuration set C. A special kind of one dimensional cellular automata
are those where we can return to previous stages of the system, in this case the evolution rule ¢
has an inverse rule ¢! that induces a global mapping ® ! inverse to the global mapping ®.

This kind of one dimensional cellular automata are called reversible, since for any configuration ¢
in the configuration set C, these automata hold that:

Pod )= lod(c)=c (1)

Now we will see that every one dimensional cellular automaton can be simulated by another au-



tomaton with neighborhood of length 2.

2.2 Simulating a one dimensional cellular automaton with another of neighbor-
hood size 2

The process of making this simulation is very simple. In a (k,7) one dimensional cellular automaton
with evolution rule ¢, every neighborhood in the set K"+ forms a new cell applying the evolution
rule p. In other words, to get a new cell we need 2r + 1 cells, that is, in general the ancestor
sequence has 2r cells more than the successor sequence.

2r+1 cells

1 cell

Figure 1: The ancestor of any cell has 2r more cells

In this way, if we take a sequence with 2r cells, an ancestor of this sequence will have 2r cells more,
or a total of 4r cells. Then, for a sequence with length 2r we can make a partition of every ancestor
in 2 sequences that don’t overlap, each one of them with length of 2r cells.

2r cells 2r cells
—————n . —  ———

w@

—_———
2r cells

Figure 2: Ancestor of a sequence of 2r cells, this ancestor can be divided in 2 sequences of 2r cells
each one

So, we can define a new alphabet K; where every sequence of length 2r shall be represented by a
unique state of the set K ;. Thus, the cardinality of the set K; is the same that the cardinality of
the set I{?". Using this new set K; of states, we can get a new evolution rule ,, for simulating the



original evolution rule ; in this case the evolution rule ¢, is a mapping from the set K? to the set
K;.

With this process a (k,r) one dimensional cellular automaton can be simulated with another
(ki,1/2) one dimensional cellular automaton, where the cardinality of the set K; of states is the
same that the cardinality of the set K ?".

Of course, in this process we have a considerable increase in the number of states, this is more
notorious if the number of states or the neighborhood size of the original one dimensional cellular
automaton is big. Nevertheless, if we can characterize a particular property in the behavior of
(k,1/2) one dimensional cellular automata, then we have this characterization for all kind of one
dimensional cellular automata.

We are interested in the analysis of the dynamical behavior produced by global mappings in (k,1/2)
reversible one dimensional cellular automata. For this reason, we need one way to define a notion
of distance and closeness among the configurations of the configuration set C, we will get this using
the cylinder sets.

2.3 Cylinder sets

Since we want to study sequences of states and mappings among these sequences, we need one
way for analyzing such sequences. We want a way of organizing the sequences of states such that
similar sequences have the same dynamical behavior. For this reason we put special attention in
the handling of finite sequences of symbols and the indexing of such sequences in the configurations
of the configuration set C'.

To place the configurations in the configuration set C' in sets with similar configurations both for
constructions and for their dynamical behavior, we will use the cylinder sets.

Definition 1. A cylinder set is a set of configurations such that every configuration ha the same
finite sequence of states placed in the same coordinates that the rest of the configurations in the set.

Following definition 1, given a sequence w € K* with length | w | odd, we have the following
definition:

Definition 2. A centered cylinder set Cp,,) represents the set of configurations such that their central
coordinates are defined by the same sequence w of states, that is:

Cru) = {c | ¢ € Ol w2, wl/z) = w} (2)

Definition 2 means that in a centered cylinder set it only matters the central sequence of states,
doesn’t matter the states of the rest of the cells.



Figure 3: Centered cylinder set specified by the finite sequence w of states

The family € is the family of all the possible centered cylinder sets that we get with the configu-
rations of the configuration set C. Using the family € of centered cylinder sets we get a topology
of the configuration set C' such that this is a compact, Hausdorff, and metric topology [Hed69],
[Kar96]. Thus, the configuration set C' can be taken as an space, this space is represented by the
notation (C, ).

An important feature of the family € of centered cylinder sets is that every centered cylinder set
is disjoint to the others. For finite sequences w; and wy elements of the set K*, if wy contains ws
as a central subsequence, then the intersection of the centered cylinder set Cp,,; with the centered
cylinder set Cp,,) preserves the centered cylinder set which has more specified coordinates, that is:

Crui)Chuws] = Cluy] (3)

But, in the case that ws is not a centered subsequence of wy, then merely the centered cylinder
sets specified by these sequences doesn’t agree in their central parts, therefore:

Clun)Cluy) = (4)

Taking advantage that the configuration space (C, €) is compact, we can always find a finite covering
of this space. In particular, for n € Z™*, we can take every sequence of states of the set K" C K*
and form the family of centered cylinder sets specified by these sequences:

Cgn = {C[w] | w € Iﬁyn} (5)

In this way, the family €= of centered cylinder sets has a finite number of cylinder sets, in particular
it has k™ cylinder sets. Since every configuration belongs to a centered cylinder set in the family
Cxn, then we have that:

Q[(n :C (6)
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So, the family €xn covers the whole configuration space (C,€) with a finite number of subsets,
or centered cylinder sets. Since we can consider every centered cylinder set as a set of nearby
configurations, and different centered cylinder sets have more distant configurations, is desirable to
specify a function of distance that give us a precise measure of the closeness among configurations
in the configuration space (C,€).

For ¢ and ¢, configurations of the configuration space (C,€), we use the distance:

0 if c=c
N g
1+k

where £ € N and k is the minimum absolute value of the coodinate where c_;] # c’[_ K] OF Clk] # c’[k].
Thus, we have a numerical way for knowing the distance among two configurations in the config-

uration space (C,€), in particular, every centered cylinder set Cf, is a set of configurations where
the maximum distance among its elements is defined by:

e (8)

Using the centered cylinder sets in (k,1/2) reversible one dimensional cellular automata, we shall
analyze the dynamical properties of the global mapping ® induced by an invertible evolution rule
. But first, we will explain the characterization of the behavior of these systems.
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3 Characterization of (k,1/2) reversible one dimensional cellular
automata

A characterization of reversible one dimensional cellular automata is possible if we use block per-
mutations and shifts, this process will be useful for analyzing dynamical behavior of such systems.

The main result in the work of Kari [Kar96] is that the action of every reversible one dimensional
cellular automaton can be represented by the process of applying 2 block permutations and a shift
among them. To explain the previous affirmation, first we will explain which are the properties of
these reversible systems.

3.1 Properties of reversible one dimensional cellular automata

Based on the work developed by Hedlund [Hed69], we can notice the following:

Proposition 1. Reversible one dimenstonal cellular automata have the following properties:

1. Every finite sequence of states in the set K* have k> ancestors or finite sequences that
generate it employing the evolution rule

2. The ancestors of every finite sequence in the set K* have L different left sequences, 1 unique
central part and R different right sequences, holding that LR = k*"

The first statement in Proposition 1 can be called the principle of uniform multiplicity of ancestors
[McI91b]; and the values of L and R in the second statement are defined by Hedlund as the Welch
indices [Hed69]. In this way, a reversible one dimensional cellular automaton holds that every
sequence has the same number of ancestors that all the other sequences, and the ancestors of each
sequence share a common central part , leaving the differences in the extremes.

3.2 Block permutations

Using the properties of reversible one dimensional cellular automata we can characterize the evo-
lution of these systems. For a reversible one dimensional cellular automaton with invertible rules
¢ and ¢!, take the greatest value of the neighborhood radius among both evolution rules, and
represent these rules with this neighborhood radius, in such a way that both rules have the same
neighborhood size.

Since both rules have the same neighborhood size, then a sequence of 2r 4+ 1 cells maps to a single
state applying the inverse evolution rule ¢!, but the same sequence has k?" ancestors with the
evolution rule ¢. In this way we have that a sequence of 2 + 1 has k*" ancestors which share a
unique common central cell, as is presented in Figure 4 .
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2r+ 1 cells LR=k?

Figure 4: Ancestors of a neighborhood in a reversible one dimensional cellular automaton

This is extensible for sequences of states with a length greater than 2r 4+ 1, a long sequence can be
taken as successive overlaps of sequences with length 2+ 1. Therefore we have that for n > 2r +1,
a sequence of length n has k?" ancestors, each one of them with n + 2 cells, where the ancestors
share a common sequence with length n — 2r; this is showed in Figure 5.

rs
O~ -~ n-2r common cells -0

L \ - R

initial

cells

g -

Figure 5: Ancestors of a sequence of n cells in a reversible one dimensional cellular automaton

Take a sequence of 4r cells, this sequence has k%" ancestors of length 6r cells, and these ancestors
have a common central sequence with 2r cells, as we can see in Figure 6.

2rcells 2rcells

D S~ 2r common cells //’D
. '

0o--- “\D'

Figure 6: Ancestors of a sequence of 4r cells in a reversible one dimensional cellular automaton

The same behavior exists for the inverse evolution rule ¢! but in inverse direction and with
inverted values of its Welch indices. That is, the index L in the inverse evolution rule ¢! has the
same value that the index R in the original evolution rule o, and the index R in ¢~! has the same
value that the index L in ¢. With the construction in Figure 6, we can define 2 sets L, and R,
where the elements of L, are sequences of length 27 cells and the left ancestor sequences of each
one of them, also of length 2r cells. This is analogous for constructing the elements of set R..
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2r cells 2r cells

Element of Ly Element of Ry

Figure 7: Elements of the sets L, and R,

Thus, the set L, has as many elements as | L, | = Lk*" and the set R, has as many elements as
| R, | = Rk*. We now define two sets, X and Y, such that the cardinality of X is | X | = | L, |
and the cardinality of the set Y is | Y | =| R, |. Then, there exists a bijection both from the set L,
to the set X, and from the set R, to the set Y. In this way, we can define two block permutations

p1 and po.

The permutation p; goes from the set of sequences with length 61 cells to all the possible sequences
with the form x;y;, where ; € X and y; € Y, for 0 < < Lk? and 0 < j < Rk?". The second
permutation ps is almost analogous, it goes from the set of sequences with length 6r cells to the
set of all the possible sequences with the form y;x;. With these permutations, we can represent
the evolution of a reversible one dimensional cellular automaton as the composition py o p5 Lof two
block permutations and a shift of length 37 cells between both permutations.

Figure 8: Evolution of a reversible one dimensional cellular automaton represented by the compo-
sition py o ps of block permutations and a shift of 37 cells among the permutations

We shall use these block permutations in (k,1/2) reversible one dimensional cellular automata
to analyze the dynamical behavior of these systems. The following section establishes the basic
concepts of dynamical system theory that we use in this study.
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4 Dynamical system concepts

The idea behind dynamical systems theory is studying, understanding, and estimating the long
place behavior of a system that changes in time. The characterization of this behavior consists
in knowing which are the conditions of a system such that it has a particular comportment; some
examples of these comportments are the following:

The system has a periodic behavior

The system recurrently returns to a given set

The system goes to all the possible sets that cover the space of the system

The system never leaves a given set

Using some useful topological concepts we define a dynamical systems in the following way:

Definition 3. A dynamical system (X, W) consists of a metric, compact space X and a continuous
mapping V¥ : X — X that maps elements of the space X to the space X.

A consequence of definition 3 is the concept of an orbit of a given point in the space X:

Definition 4. In a dynamical system (X, W), an orbit is the trajectory that a given point x € X
has in the space X with the successive application of the mapping V over the point x

The reason for the compactness of the space X is that such spaces can be covered and thereby
represented by a finite number of sets. With this, the orbit of a point x in the space X can be
described by the finite number of sets that it reaches, and this feature provides an easier analysis.
In the study of the dynamical behavior in (k,1/2) reversible one dimensional cellular automata,
we are interested in characterizing the orbits of the configurations ¢ in the configuration space
(C, ¢) applying the global mapping ® !. In particular, we want to describe the periodic, recurrent
and the transitive behavior, for this motive, based on the works of J. de Vries [dV93] and Clark
Robinson [Rob95] we present some definitions of these kinds of behavior.

Definition 5. A point x in a dynamical system (X, V) is called a periodic point with minimum
period n if U (x) =2 and W (z) #x for0<j<n

Definition 5 says that after n iterations of the mapping ¥, the point x comes back to the same
place. If a point z in a dynamical system (X, ¥) has period equal 1, then it is a fized point. The
analysis of periodic points and periodic orbits is the beginning in the study of a dynamical system.
Now, we can ask if there are orbits that come back not to the same point but to the same open set
of the initial point. If this happens for every open set in the space X, then we have the following
definition:

Definition 6. A dynamical system (X, V) is non-wandering if for every open set O of the space
X there exists an integer n > 0 such that ¥ (O)NO # &, that is, there exists a point x € O such

that " (x) € O
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In the previous definition, we are using the topologycal nature of the space X utilizing the open
sets of this space for characterizing the non-wandering orbits that mapping ¥ can generate. Until
now, we have defined orbits with a recurrent behavior, but another question is if the dynamical
behavior of the system is such that an orbit can reach each one of the neighborhoods that cover
the space X. This idea gives the following definition:

Definition 7. A dynamical system (X, V) is topologically transitive if there exists a point x in the
space X such that for all open set O in the space X there is an integer n such that U™ (x)NO # @

Definition 7 establishes a point that cross all the neghbborhoods in a finite covering of a dynamical
system (X, U). Another transitive behaviors are also possible:

Definition 8. A dynamical system (X, V) is topologically ergodic if for all pair Oy and O of open
sets of the space X, we have that U"(O1)NOs # &

This definition looking for the existence of a topologically transitive point in every open set of the
space X. Periodicity and transitivity of points and open sets are the dynamical behaviors that we
shall analyse in (k,1/2) reversible one dimensional cellular automata. In addition, we will define
one more concept, if there exists an orbit such that it reaches a given open set and it remains there
forever.

Definition 9. A dynamical system (X, V) is topologically mizing if for all pair O1 and Oa of open
sets in the space X, there exists an integer ng such that ¥"(O1)NOy # & for all n > ng

In section 5 we will develop some matrix methods for detecting the existence of the different
points and sets described in the previous definitions in (k,1/2) reversible one dimensional cellular
automata.
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5 Dynamical behavior of (k,1/2) reversible one dimensional cellu-
lar automata

In one dimensional cellular automata, we will consider the global mapping ® among configurations
of the configuration set C induced by an evolution rule ¢ as the mapping generating the dynamical
behavior in the configuration space (C, ).

The orbit described by any configuration is the progressive evolution produced by the iteration of
the global mapping ® over the same configuration, and the regions that this orbit visits are the
cylinder sets covering the configuration set C.

Right now a complete characterization of one dimensional cellular automata doesn’t exists. For
this reason is very difficult to know which are the conditions for classifying the evolution of a one
dimensional cellular automaton, doesn’t matter the simplicity of its evolution rule. However, for
the reversible case we have this characterization as we see in section 3. This result will be used to
define some matrix methods for detecting the kind of orbits described in section 4.

We only analyse the case of (k,1/2) reversible one dimensional cellular automata because all the
cases can be simulated whit this kind of automata.

5.1 Dynamical behavior

Our objective in studying dynamical behavior of reversible one dimensional cellular automata is
understanding the conditions that an initial configuration must hold to evolves in a particular
behavior. In this way, in one dimensional cellular automata we define an orbit in the following way:

Definition 10. In one dimensional cellular automata, for i € N and configurations ¢; € C, an
orbit e = {co,c1,... ,¢i,...} is the sequence of configurations such that configuration c;y1 is the
evolution of the configuration c;

Given an orbit e, its behavior is characterized by the cylinder sets that it reaches and in what
way it passes these cylinder sets. For covering the configuration space (C',€), we only use the set
K3 of finite sequences with 3 cells. We do this because for (k,1/2) reversible one dimensional
cellular automata, sequences of 3 cells are that we need to form the block permutations, that is,
sequences of length 6r. Block permutations define the transition from one sequence of 3 cells to
another sequence with the same length, so we can see that as the transition from one cylinder set
to another cylinder set. There exists a shift among these sequences of length 3r, or of length 3/2
cells with neighborhood size 2. To obtain a shift of equal length that the sequences, we define an
evolution rule ¢’ = ¢ o ¢, that is, an evolution rule that is the composition of the original evolution
rule. This process is not necessary but is useful because allows us to work with centered cylinder
sets.

To have a simpler notation in this section, we shall use the symbol ¢ to reference the composition of
the original evolution rule, and the symbol ¢! to reference the composition of the inverse evolution

17



rule. These invertible evolution rules induce global mappings ® and ®~! that map one sequence
of 3 cells to another sequence with the same length and a shift among them of 3 cells. In other
words, for an orbit e defined with this evolution rule, we have a mapping from a centered cylinder

set C[Ci[—l,lj] to a centered cylinder set C[Ci+1[—1,1]] as we can see in Figure 9.

4 3 2

G - [ [T T]
|

10 112 3 4

positions

B I-
| | |
| | |
aEIFI I
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Y

temporal | | | |
configuration

I 3cells |

Figure 9: Passing from the centered cylinder set (| ] to the centered cylinder set C;

Ci[—1,1] C1‘4-1[—1,1]]
using the composition of evolution rules in a (k, 1/2) reversible one dimensional cellular automaton

Based on block permutations, we present simple matrix methods for detecting the existence of
different kind of orbits.

5.2 Periodic behavior of (k,1/2) reversible one dimensional cellular automata

In the paper of Hedlund [Hed69], section 7 is devoted to analyse the dynamical behavior of the
shift systems; based on his work we will do an analysis of periodic orbits in (k,1/2) reversible one
dimensional cellular automata.

Suppose that a given configuration ¢ in the configuration set C'is formed by the successive repetition
of a finite sequence w of n cells. Thus, the states that form this configuration have a period n.
Now, suppose that we apply an invertible evolution rule ¢, since the action of this rule is a block
permutation, we can characterize the periodical behavior under the global mapping ® induced by
@ of a configuration ¢ formed by a periodical finite sequence w € K™.

Theorem 1. Given a (k,1/2) reversible one dimensional cellular automaton and a configuration
¢ formed with the successive repetition of a finite sequence w of length n, the maximum period of
the orbit formed with the configuration c is k"

Proof. The configuration c is formed with a periodic finite sequence w of n cells, take a sequence
of wy of 3n cells in the configuration c¢. The sequence wy has a period of length 3n because is the
repetition of a periodic sequence w of n cells. But w; also has n sequence of 3 cells each one of
them, applying the global mapping ®, every sequence of 3 cells maps to another unique sequence
of 3 cells as is showed by the block permutations. Then the complete sequence wy of 3n cells maps
to an unique sequence ws of 3n cells too.

18



Since all the sequences of length 3n cells are in the finite set K>", and the cardinality of the set

K3 is | K3 | = k3", then in some moment during the evolution of the automaton we have to
repeat the same sequence w;. Thus, the maximum period of the configuration ¢ formed with the
repetition of a finite sequence w of length n is &3". O

In the general case of (k,r) reversible one dimensional cellular automata, Theorem 1 defines a
maximum period of 6rn steps; where r is the neighborhood radius and n is the length of the finite
sequence w whose repetition forms the configuration ¢. We have to point out that this maximum
period in most cases is a bad quote, because the practical experience shows that this period is much
smaller.

Periodic orbits e of period n goes from a centered cylinder set to the same cilinder set. Since every
sequence w of length 3 cells defines a centered cylinder set, then the family of all centered cilinder
sets forms a finite covering of the configuration space (C,€). Then, a consequence of Theorem 1
and using Definition 6 is the following:

Corollary 1. For every sequence w € K3, the centered cylinder set Clw] s @ non-wandering set.

Proof. Take every sequence w in K2, and form a configuration ¢ with the successive repetition of w.
Then the configuration ¢ belongs to the centered cylinder set Cp,) and is periodic with finite period
by Theorem 1. Thus, the orbit of ¢ returns to the same centered cylinder set Cp,,] and therefore is
non-wandering O

Now we will use block permutations for detecting the periodical behavior of these systems.

5.3 Detecting some periodical behavior in (k,1/2) reversible one dimensional
cellular automata

We can use transitions among block permutations to find periodical orbits in (k, 1/2) reversible one
dimensional cellular automata. Take the set K? formed with all the sequences of 3 cells, with these
sequences we can form k* configurations, each one of them obtained with the succesive repetition
of one sequence in the set K3. In this way, for a configuration of this kind, we can know which is
its succesor configuraton using the block permutations.

For 0 < i < k3, every configuration ¢; has the form ... w;w;w; ... for w; € K3 and every w; maps to
an unique block with the form x;y; for x; € X and y; € Y, then the whole configuration ¢; maps to
a sequence of blocks with the form - - - x;y;x;y;2;y; - - - . Thus, we have only two kind of blocks, ;y;
and y;x;, and applying the permutation p, ! the block y;x; maps to an unique sequence w; € K3.
Making twice this process we have a mapping from the block z;y; to another block zpy. placed in
the same coordinates in relation to the positions in the configuration ¢;, this is showed in Figure
10.
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Figure 10: Mapping from a block z;y; to a block xy placed in the same position

Applying the previous process to all the k3 configurations, then we have a bijective mapping among
the blocks xy because the cellular automaton is reversible, so every block has one ancestor and
successor. With this, we can form a connectivity relation whose indices are blocks with the form
xy and the elements show the mapping from one block to another.

zy

z;Y; . 1

ST zy

Table 1: Connectivity relation for periodic behavior defined with blocks xy

We can define an equivalence relation in the connectivity relation defined in Table 1. If the block
x;y; maps to xpyr and this block maps to z,ym, then there is a mapping from x;y; to T ym.
We can do the transitive closure of the connectivity relation (for example, using the Warshall
algorithm), and get the equivalence relation. Due to the periodical behavior of (k,1/2) reversible
one dimensional cellular automata, every block zy returns to itself and the transitive closure is
also reflexive. If there exists a mapping from the block x;y; to the block Xy, then due also to
the periodical behavior, there exists a mapping from z,,y,, to z;y;, thus the relation is symmetric
and we have an equivalence relation, as is presented in Figure 11. Every class in this equivalence
relation represents a set of periodic configurations. The period of every class is the number of
elements that it has.

20



Figure 11: Representation of some equivalence relation defined by the transitive closure of the
connectivity relation described in Table 1

5.4 Transitive behavior of (k,1/2) reversible one dimensional cellular automata

We have seen that some restrictions in the configurations define both periodic orbits and non-
wandering centered cylinder sets in (k,1/2) reversible one dimensional cellular automata. Now is
desirable to consider not only one but all the possible mappings that a sequence w € K3 has to.
This can be done using again block permutations and the process is the following;:

1. For a sequence w; of states in the set K3, take its mapping to an unique block x;y; using the
block permutation p.

2. Associate the element x; with all the elements y in the set Y and the element y; with all the
elements x in the set X.

3. With the associations yx; and y;x and using the block permutation p, ! form the respective
list of the mappings from these associations to sequences w; and wy, of states in the set K 3,

4. Using the block permutation p1, every list of sequences w; and wy, of states defined by yx;
and y;x, maps respectively to a list of blocks with the form z;y; and x;y.

5. From the last lists, take only all the different elements y; in the first list and all the different
elements x; in the second list.

6. Form the cartesian product of such lists. This cartesian product form a new list of blocks
with the form y;xy.

7. The list of blocks y;x, maps to a list of sequences w,,, using the block permutation p3 ! Thus,
we have a subset of the set K.

In this way, we have that an initial sequence w; maps to a set of sequences w,, placed in the same
position and therefore we have all the possible mappings from sequences to sequences in the set K3
as is showed in Figure 12.
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Figure 12: Description of all the possible mappings from a sequence w; to a set of sequences w,,
using block permutations

Using all the sequences w of states in the set i3 for defining centered cylinder sets Clw], the previous
process defines the possible mappings from a centered cylinder set to other centered cylinder sets.
In this way, we can use this process for detecting transitive behavior among centered cylinder sets
that cover all the configuration space (C,€).

5.5 Detecting transitive behavior in (k,1/2) reversible one dimensional cellular
automata

Using the process presented in section 5.4, we can define a transition relation among sequences w
in the set K3. In this way, we have a surjective mapping from the set K3 to itself, since every
sequence has at least one ancestor. In this transition relation, the indices are sequences w of 3 cells
and the elements show the mapping from one sequence w; to a set of sequences w,, as is presented
in Table 2.

sequences

Wi, S Wi, s sequences

Table 2: Transitive relation among sequences of the set K3 defined by block permutations

As in the connectivity relation defined in Table 1, we can do the transitive closure of the transition
relation. Depending of the number of classes that we get with this process, we will detect different
kinds of transitive behavior among centered cylinder sets defined by sequences in the set /3.

Lemma 1. If the transitive closure of the transition relation in Table 2 forms one unique class,
then the (k,1/2) reversible one dimensional cellular automaton is topologically ergodic
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Proof. For every sequence w in the set I3, if the transitive closure forms an unique class, then
it shows that there exists an orbit e from the centered cilinder set Cp,) to all the others centered
cylinder sets, and therefore the centered cylinder set C,) is topologically ergodic. Since we have
only one unique class, then all sequences w in the set K° carry out with the previous statement,
and the centered cylinder sets defined by these sequences are topologically ergodic. O

In the configuration space (C,€), if a (k,1/2) reversible one dimensional cellular automaton defines
a topologically ergodic dynamical system then for every w € K3, there exists a configuration ¢ which
belongs to the centered cylinder set C,,) and it has an orbit through all the other centered cylinder
sets defined by the sequences in the set 3. Thus, a consequence of Lemma 1 is the following:

Corollary 2. A topologically ergodic (k,1/2) reversible one dimensional cellular automaton has
topologically transitive configurations.

Finally, the transition relation and its transitive closure give us important information about the
mixing behavior of (k, 1/2) reversible one dimensional cellular automata. In the transition relation,
the 1’s in the principal diagonal indicate centered cylinder sets which can return to the same
centered cylinder set in one step. In other words, the principal diagonal shows centered cylinder
sets that can be fixed.

Using the principal diagonal and the transitive closure of the transition relation, we have the
following result:

Theorem 2. If a (k,1/2) reversible one dimensional cellular automaton is topologycally ergodic
and its transition relation has a non-zero principal diagonal, then the automaton is topologically
mizing

Proof. Because the principal diagonal is non-zero, there exists at least one centered cylinder set
that can be fixed. Since the automaton is ergodic, there exists an orbit e from any centered cylinder
set to a centered cylinder set that can be fixed. Thus, this orbit in this centered cylinder set can
remain there n steps for n € Z*, and then goes out to another centered cylinder set. So, beginning
in every centered cylinder set, we can reach any other centered cylinder set in the number of steps
that we want, therefore every centered cylinder set is topologically mixing. O

In this way, we have defined simple matrix methods that using the properties of block permutations
and transitive closures detect periodical and transitive behavior. Of course, a big problem is that
these methods only detect the existence of these orbits but they doesn’t give an explicit example
of them.
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6 Classifing (k,1/2) reversible one dimensional cellular automata
using their periodical behavior

The methods presented in section 5 could be useful for comparing the dynamical behavior of (k,1/2)
reversible one dimensional cellular automata and thereby we can get a dynamical classification of
these systems.

In particular we will use the transitive closure of the connectivity relation defined in Table 1 for
analyzing periodical behavior. Take two (k,1/2) reversible one dimensional cellular automata and
the transitive closures of their connectivity relations, then we consider that these automata belong
to the same dynamical class if:

1. The number of equivalence classes is the same in both equivalence relations.

2. There exists an isomorphism from every equivalence class in one equivalence relation to an-
other equivalence class in the other equivalence relation.

An example of equivalence classes that belong to the same dynamical class is showed in Figure 13.

Figure 13: Equivalence relations of the connectivity matrices that belong to the same dynamical
class

With this process we are comparing the quantitative behavior of the transitive closure of the
connectivity relations, that is, we are contrasting if the block permutations of different (k,1/2)
reversible one dimensional cellular automata have the same periodical behavior.

This way of classifing (k,1/2) reversible one dimensional cellular automata is based more in an
experimental and numerical approach than in a theoretical one, besides, this process is easy for
calculating if the (k,1/2) reversible one dimensional cellular automata have not a big number of
states.
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7 Examples

In this section, we present some examples of the matrix methods developed in sections 5 and 6
for detecting and classifying (4,1/2) reversible one dimensional cellular automata. These methods
were implemented in the system RLCAU that calculates (k,1/2) reversible one dimensional cellular
automata using block permutations.

Every cellular automaton in the following examples has an hexadecimal number that identifies each
one of these cellular automata. This hexadecimal number is calculated taking the evolution rule,
sorting it in descending lexicografical order and dividing this sort in pairs of two neighborhoods,
every pair has associated an unique hexadecimal symbol depending of the evolution of its neigh-
borhoods. In this way we have 8 pairs of two neighborhoods, then we have an hexadecimal number
of 8 symbols identifying every evolution rule in (4,1/2) one dimensional cellular automata.

We shall use a matrix for representing the evolution rule of a (4,1/2) one dimensional cellular
automaton. In this matrix, the indices represent partial neighborhoods, thereby the positions
of the elements are complete neighborhoods. Every element represents the evolution of every
neighborhood. We also use the system NXLCAU [McI90] for developing these examples.

7.1 (4,1/2) reversible cellular automaton, rule FFAA5500

This automaton has Welch indices L = 1 and R = 4. The evolution rule, an example of the
evolution, and its block permutations are the following;:

state 3

01 2 3 T
st [Nl T oo |pmmasm
- = 5ese \\\\'\\
state2 [T 2%%% \ i

-

Evolution FFAASS00 o
: T

Block permutations

p2

£
o

W N N R O 0 DO LW LN N NN 0000
3
4

Sequence p1 p2
-

A A A A A A A A A
H

Figure 14: Evolution of the (4,1/2) reversible one dimensional cellular automaton rule F'F' A A5500
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The connectivity relation associated with this automaton is the following;:

Figure 15: Connectivity relation of the (4,1/2) reversible one dimensional cellular automaton rule
FFAA5500, the dark points show fixed configurations

The transitive closure of connectivity relation associated with this automaton is the following:

Figure 16: Transitive closure of the connectivity relation of the (4,1/2) reversible one dimensional
cellular automaton rule F'F'AA5500
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If we rearrange this transitive closure, we obtain the following classes:

Figure 17: Rearrange of the transitive closure of the connectivity relation of the (4,1/2) automaton
rule F'F'AA5500

In this case we see that the automaton have 24 equivalence classes, 20 of 3 elements each one
and 4 of one element. Take the block 1,8 representing the sequence of states 102. This block has
period 3, so the configuration formed with repetitions of the sequence 102 must have period 3. We
have to remember that we are using the composition of the original evolution rule for keeping the
same position when we compare configurations. In this way, the period 3 is truly a period 6 in the
evolution of the automaton. An example of this periodical behavior is the following:

Figure 18: Period 6 corresponding to a period 3 using the composition of the evolution rule in the
initial configuration formed with repetitions of the sequence 102
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Now, we will see all the possible mappings among sequences of 3 cells using the process described
in section 5.4. For example, the mapping of 203 is the following:

Sequence 2 Q 3
pl 2 12
0o 2 12 0
4 2 12 1
8 2 12 2
12 2 12 3
5 2
1 2
9 2
13 2
6 2
10 2
2 2
14 2
7 2
11 2
15 2
p2 3 2
o 0 20 3 0
0 1 210 3 1
o 2 20 3 2
0 3 210 3 3
1 0o 2
1 1 2
1 2 2
1 3 2
2 0 2
2 1 2
2 2 2
2 3 2
30 2
3 1 2
32 2
Sequence 3 3 2
0 8| 0 7
0o 9|0 11
0o 2| 0 15
0 15 0 3
1 8
1 9
1 2
1 15
2 8
2 9
2 2
2 15
3 8
3 9
3 2
pl 3 15
8§ 0
9 0
2 0
p2 15 0
o 2 0
1 2 0
2 2 0
Seguences 3 2 0

Figure 19: All the possible mappings from the sequence 203

Calculating all the possible mappings among sequences of 3 cells, and taking such sequences as
centered cylinder sets, we have the following mapping among centered cylinder sets:
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Figure 20: Mapping among centered cylinder sets, the dark points indicate recurrent centered
cylinder sets

The transitive closure of the mapping among centered cylinder sets is the following;:

Figure 21: Transitive closure of the mapping among centered cylinder sets, the dark points indicate
recurrent centered cylinder sets

Since we only have one equivalence class and there exists centered cylinder sets that can be fixed,
then this automaton has topologically mixing orbits. For example, we can form an orbit from
the centered cylinder set Cpgo3) to the centered cylinder set Cj31) in 6 steps, corresponding to 12
evolutions because the composition of the evolution rule. We use the recurrent centered cylinder
set Clagg) for constructing such an orbit.
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Positions: FEE Sequence

Figure 22: Orbit from the centered cylinder set Cjpg3) to the centered cylinder set Cj319 in 6 steps

But, since the centered cylinder set Cjg9 can be fixed, we can use it to get an orbit from the
centered cylinder set Cpyp3) to the centered cylinder set Cj319) in 7 steps.

Positions:

01 v Sequence

Figure 23: Orbit from the centered cylinder set Cja93) to the centered cylinder set Cj319) in 7 steps
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(4,1/2) reversible cellular automaton, rule 5FOA5F0A
This automaton has Welch indices L = 2 and R = 2. The evolution rule, an example of the

evolution, and its block permutations are the following;:

7.2

31

Figure 24: Evolution of the (4, 1/2) reversible one dimensional cellular automaton rule 5F0A5F0A
Figure 25: Connectivity relation of the (4,1/2) reversible one dimensional cellular automaton rule

The connectivity relation associated with this automaton is the following;:
5F0A5F0A, the dark points show fixed configurations



The transitive closure of connectivity relation associated with this automaton is the following:

Figure 26: Transitive closure of the connectivity relation of the (4,1/2) reversible one dimensional
cellular automaton rule 5F'0A5F0A

If we rearrange this transitive closure, we obtain the following classes:

Figure 27: Rearrange of the transitive closure of the connectivity relation of the (4,1/2) automaton
rule 5F0A5F0A

In this case we obtain the same equivalence class that in the example of section 7.1, therefore both
automata belongs to the same dynamical class. Take the block 3,0 representing the sequence of
states 102. This block has period 3, so the configuration formed with repetitions of the sequence
102 must have period 3, or period 6 in the evolution of the automaton.

32



An example of this periodical behavior is the following:

Positions: S c101 e Generation

Figure 28: Period 6 corresponding to a period 3 using the composition of the evolution rule in the
initial configuration formed with repetitions of the sequence 102

Now, we will see all the possible mappings among sequences of 3 cells using the process described
in section 5.4. For example, the mapping of 203 is the following:

Sequence 2 Q 3
pl 6 4
0 6| 4 0
4 6| 4 1
5 6| 4 6
1 61 4 7
2 6] 4 4
6 6] 4 5
7 6| 4 2
p2 3 6l 4 3
o 0 2|0 1 0
0 1 21 0 1 1
1 0 2|0 1 2
1 1 21 0 1 3
2 0 2|0 3 0
2 1 21 0 3 1
30 2|0 3 2
Sequences 3 1 21 0 3 3
2 0} 2 7
2 512 3
3 0] 2 5
3 51 2 1
6 0] 4 7
6 5| 4 3
7 0 4 5
pl i 51 4 1
0 4
0o 2
5 4
p2 5 2

h—oco
[ SENE NSNS
=l =]

Seqyence:

Figure 29: All the possible mappings from the sequence 203
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Calculating all the mappings among sequences of 3 cells, we have the following mapping among
centered cylinder sets:

%::‘;'

Figure 30: Mapping among centered cylinder sets, the dark points indicate recurrent centered
cylinder sets

The transitive closure of the mapping among centered cylinder sets is the following;:

Figure 31: Transitive closure of the mapping among centered cylinder sets, the dark points indicate
recurrent centered cylinder sets

Since we only have one equivalence class and there exists centered cylinder sets that can be fixed,
then this automaton has topologically mixing orbits. For example, we can form an orbit from
the centered cylinder set Cjjag) to the centered cylinder set Cipg3) in 6 steps, corresponding to 12
evolutions because the composition of the evolution rule. We use the recurrent centered cylinder
set Cpy11) for constructing such an orbit.
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Positions: FEE Sequence

Figure 32: Orbit from the centered cylinder set C[j99) to the centered cylinder set Cjgp3) in 6 steps

But, since the centered cylinder set Cjj1) can be fixed, we can use it to get an orbit from the
centered cylinder set Cjy9) to the centered cylinder set Cjgp3) in 7 steps.

Positions: FEE Sequence

Figure 33: Orbit from the centered cylinder set Cjjog) to the centered cylinder set Cjgo3) in 7 steps
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(4,1/2) reversible cellular automaton, rule AA5500FF

7.3
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This automaton has Welch indices L = 1 and R = 4. The evolution rule, an example of the

evolution, and its block permutations are the following;:

Figure 34: Evolution of the (4,1/2) reversible one dimensional cellular automaton rule AA5500F F'

The connectivity relation associated with this automaton is the following;:

Figure 35: Connectivity relation of the (4,1/2) reversible one dimensional cellular automaton rule

AAB500F F
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The transitive closure of connectivity relation associated with this automaton is the following:

Figure 36: Transitive closure of the connectivity relation of the (4,1/2) reversible one dimensional
cellular automaton rule AA5500F"F

We have the following classes:

Figure 37: Classes of the transitive closure of the connectivity relation of the (4,1/2) automaton
rule AA5500F F

In this case we have 10 classes of 6 elements and 2 classes of 2 elements. Take the block 0,11
representing the sequence of states 102. This block has period 6, so the configuration formed with
repetitions of the sequence 102 must have period 6, or period 12 in the evolution of the automaton.
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An example of this periodical behavior is the following:

Positions: S c101 e Generation

Figure 38: Period 12 corresponding to a period 6 using the composition of the evolution rule in the
initial configuration formed with repetitions of the sequence 102

Now, we will see all the possible mappings among sequences of 3 cells using the process described
in section 5.4. For example, the mapping of 203 is the following:

2 Q0 3
pl 1 15
0 1 15 0
8 1 15 1
12 1 15 2
4 1 15 3
9 1
1 1
13 1
5 1
10 1
14 1
2 1
6 1
7 1
m 1
15 1
P 3 1
(U] 1 3 2 0
0 1 1 3 2 1
0 2 1 3 2 2
0 3 1|3 2 3
1 0 1
1 1 1
1 2 1
1 3 1
2 0 1
2 1 1
2 2 1
2 3 1
3.0 1
3 1 1
3 2 1
3 3 1
3 7 2 5
3 0|2 9
3 91 2 1
3 10 2 13
0o 7
0o 0
0o 9
0 10
1 7
1 0
9
1 10
2 7
2.0
2 9
pl 2 10
0 2
9 2
10 2
P 2
0o 0 2
1 0 2
2 0 2
3 0

Figure 39: All the possible mappings from the sequence 203
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Calculating all the mappings among sequences of 3 cells, we have the following mapping among
centered cylinder sets:

%::‘;'

Figure 40: Mapping among centered cylinder sets, the dark points indicate recurrent centered
cylinder sets

The transitive closure of the mapping among centered cylinder sets is the following;:

Figure 41: Transitive closure of the mapping among centered cylinder sets, the dark points indicate
recurrent centered cylinder sets

Since we only have one equivalence class and there exists centered cylinder sets that can be fixed,
then this automaton has topologically mixing orbits. For example, we can form an orbit from
the centered cylinder set Cjp1y) to the centered cylinder set Cip3g) in 6 steps, corresponding to 12
evolutions because the composition of the evolution rule. We use the recurrent centered cylinder
set Clggq) for constructing such an orbit.
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Positions: FEE Sequence
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Figure 42: Orbit from the centered cylinder set Cg1q) to the centered cylinder set Cjg3g) in 6 steps

Since the centered cylinder set Cjpag) can be fixed, we can use it to get an orbit from the centered
cylinder set Cjgyq) to the centered cylinder set Cjozg) in 7 steps.

Positions: Sequence
B2 o1
[

023

BB 2
L
L

020

— - 020
120
5l 030

Figure 43: Orbit from the centered cylinder set Cjpyy) to the centered cylinder set Cjg3g) in 7 steps
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(4,1/2) reversible cellular automaton, rule BB991133
This automaton has Welch indices L = 2 and R = 2. The evolution rule, an example of the

evolution, and its block permutations are the following;:

7.4

?

LCAU4H Evolution
v +
BB991133

DEEEm
oEiEckR

Block

41

Figure 44: Evolution of the (4,1/2) reversible one dimensional cellular automaton rule BB991133
Figure 45: Connectivity relation of the (4,1/2) reversible one dimensional cellular automaton rule

The connectivity relation associated with this automaton is the following;:
BB991133



The transitive closure of connectivity relation of this automaton is the following:

Figure 46: Transitive closure of the connectivity relation of the (4,1/2) reversible one dimensional
cellular automaton rule BB991133

If we rearrange this transitive closure, we obtain the following classes:

Figure 47: Classes of the transitive closure of the connectivity relation of the (4,1/2) automaton
rule BB991133

In this case we obtain the same equivalence class that in the example of section 7.3, therefore both
automata belongs to the same dynamical class. Take the block 5,7 representing the sequence of
states 102. This block has period 6, so the configuration formed with repetitions of the sequence
102 must have period 6, or period 12 in the evolution of the automaton.
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An example of this periodical behavior is the following:

Positions: S c101 e Generation

Figure 48: Period 12 corresponding to a period 6 using the composition of the evolution rule in the
initial configuration formed with repetitions of the sequence 102

Now, we will see all the possible mappings among sequences of 3 cells using the process described
in section 5.4. For example, the mapping of 203 is the following:

Sequence 2 Q 3
pl 1 4
0 1 4 0
4 1 4 5
1 1 4 2
5 1 4 7
6 1 4 4
2 1 4 1
7 1 4 6
p2 3 1 4 3
0 1 1 0o 2 0
0o 3 1 0o 2 1
1 1 1 0o 2 2
1 3 1 0 2 3
2 1 1 0 3 0
2 3 1 0 3 1
3 1 1 0o 3 2
Sequences 3 3 1 Q0 3 3
4 0] 3 5
4 6| 3 6
0 0 3 1
0 6| 3 2
6 0] 4 3
6 6| 4 6
2 0] 4 7
pl 2 61 4 2
0 4
0o 3
6 4
p2 6 3
0 1 0
0 1 3
2 1 0
Sequence: 2 1 3

Figure 49: All the possible mappings from the sequence 203
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Calculating all the mappings among sequences of 3 cells, we have the following mapping among
centered cylinder sets:

%::‘;'

Figure 50: Mapping among centered cylinder sets, the dark points indicate recurrent centered
cylinder sets

The transitive closure of the mapping among centered cylinder sets is the following;:

Figure 51: Transitive closure of the mapping among centered cylinder sets, the dark points indicate
recurrent centered cylinder sets

Since we only have one equivalence class and there exists centered cylinder sets that can be fixed,
then this automaton has topologically mixing orbits. For example, we can form an orbit from
the centered cylinder set Cf3g3) to the centered cylinder set Cjy1y) in 6 steps, corresponding to 12
evolutions because the composition of the evolution rule. We use the recurrent centered cylinder
set Cp131) for constructing such an orbit.

44



Positions: FEE Sequence
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Figure 52: Orbit from the centered cylinder set C[3p3) to the centered cylinder set Cjjq1) in 6 steps

Since the centered cylinder set Cji31 can be fixed, we can use it to get an orbit from the centered
cylinder set Cj3p3) to the centered cylinder set Cjjqy) in 7 steps.

Positions: FEE Sequence
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Figure 53: Orbit from the centered cylinder set Cj393) to the centered cylinder set Cjyq1) in 7 steps
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8 Conclusions

The topology of centered cylinder sets and block permutations, give us a way for knowing and clas-
sifying different kinds of basic dynamical behaviors in reversible one dimensional cellular automata.
We have used very simple matrix methods for finding periodical and transitive behavior in such
systems.

As we said at the end of section 5, this matrix methods detect the existence of such behaviors,
but they don’t show an explicit example of every behavior. The classification proposed in this
paper is for automata whose invertible evolution rules have the same nighborhood size, and we
have used the representation of any reversible one dimensional cellular automaton with another
with neighborhood size equal 2.

This causes that the number of states has a considerably grow. In this way, these methods are easy
for computing if the number of states is small.

Experimental observations show that Welch indices are not fundamental for establishing that a
given reversible one dimensional cellular automaton belongs to a particular dynamical class. As we
see in section 7, a same class has automata with different Welch indices.

Until now, all the automata generated in experimental observations are topologically ergodic and
topologically mixing, that is, there exists orbits from every centered cylinder set to all the others.
This could be explained by the action of the shift between block permutations, this shift allows
that a centered cylinder set can reach a bigger number of centered cylinder sets.

In (4,1/2) reversible one dimensional cellular automata, a preliminary examination shows only 2
kinds of dynamical classes. The first classification has 24 classes, 20 with 3 elements and 4 with 1
element each one. The second classification has 12 classes, 10 of 6 elements and 2 with 2 elements.
Another question is which is the influence of the uniform multiplicity both in connectivity and
transition relations, i.e., in which way the uniform multiplicity establishes the quantitative behavior
of the connections that every centered cylinder set has to.
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9 List of symbols

=

< 6 3 o F

(27“—}-1

~

B Q

K*
lai, af]

Numbers

natural numbers
integer numbers
integer positive numbers
Elements of cellular automata

set of states

number of states

configuration

neighborhood radius

local rule evolution

inverse local rule of ¢

family of neighborhoods

set of configurations

mapping between configurations induced by ¢
inverse mapping of ®

Sequences of elements of K
state sequence

set of finite state sequences
sequence beginning in position a; and ending in position ay
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Centered cylinder Set

Clu] cylinder set centered in sequence w
¢ family of centered cylinder sets

Generic sets and generic spaces

X generic set
x generic element
N intersection of sets
(@) open set
d generic distance
d(z1,22) distance between elements x; and xo
L4 generic global mapping
(X,0) generic dynamical system
Configuration space
(C, Q) topological configuration space
Qo composition of evolution rules
e configuration sequence
(C,P) dynamical system of cellular automata
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Glossary

block permutation Permutation from a sequence of 6r cells to another sequence with the same
length. This permutation is represented by a pair zy and is used for characterizing reversible
one dimensional cellular automata. page 12

cellular automaton Discrete dynamical system formed with discrete states. Its behavior depends
on local interactions among their components. page 7

configuration Inital sequence of states or sequence of states produced by the evolution of a one
dimensional cellular automaton. page 7

connectivity relation Relation among block permutations that shows their periodical behavior.
page 20

centered cylinder set Set of configurations that have the same central finite sequence of states.
page 9

dynamical system System that changes in time due to the action of a global mapping. page 15

evolution rule Mapping from neighborhoods to states in a one dimensional cellular automaton.
page 7

evolution of cellular automata Mapping from a configuration to another established by the
global mapping induced by an evolution rule. page 7

fixed point Point that remains without change under the iteration of the global mapping. page 15
neighborhood Sequence of cells evolving to a new cell. page 7

neighborhood radius Number of cells at each side of every cell that form a neighborhood. page 7
neighborhood size Size of a neighborhood in a one dimensional cellular automata. page 7

non-wandering set Open set with a point whose orbit returns to the same open set in a finite
number of steps. page 15

NXLCAU (NeXT Linear Cellular Automata) System developed by Harold V. McIntosh us-
ing the operating system NeXT. This system calculates and provides a great number of tools
for analyzing one dimensional cellular automata. page 25

orbit The trajectory described by a given point in a dynamical system under the iteration of the
global mapping. page 15

periodic point Point with an orbit that returns to itself in a finite number of steps. page 15
reversible cellular automaton Cellular automaton whose global mapping is invertible. page 7

RLCAU (Reversible Linear Cellular Automata) Based on NXLCAU, this system calculates
(k,1/2) reversible one dimensional cellular automata using block permutations. Also gives
some tools for studying such systems. page 25

transitive closure Apply the transitive property to a given relation. This can be done using the
Warshall algorithm. page 20
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topologycally ergodic Open set with a point which orbit reachs all the others open sets. page 16

topologycally mixing Open set with a point which orbit reachs any open set and it can remain
there for undefined steps. page 16

transitive point Point with an orbit that reachs all the other open sets. page 16

transition relation Relation among centered cylinder sets induced by block permutations. This
relation shows the transitive behavior of the centered cylinder sets defined by sequences of
length 61 cells. page 21

uniform multiplicity Property of surjective one dimensional cellular automata, it defines that
every finite sequence have k%" ancestors. page 12

Welch indices Indices that represent the number of different extensions in both sides of the
ancestors in reversible one dimensional cellular automata. page 12
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