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Abstract

An introduction to general aspects of the theory of
complex variable, we provide the complex number
definition, its various representations and finally
gives a brief introduction to complex functions.

1 Introduction.

Have you ever wondered how the product of two
equal numbers is never negative ? Now and then
the solution of equations leads to try to find the
square root of negative numbers, but you should
know that the product of two equal numbers can
not be negative. Then, this hardly seems have a
solution. Fortunately there is an invention to solve
this problem. An approach is to consider a num-
ber such that its square is minus one. But there
are no such real numbers in the real numbers field.
Now, consider a Real numbers field as a line whose
points are ordered. On left-hand side are nega-
tives, on right-hand side are positives and there is
the nought on the middle of line. When you mul-
tiply a number by −1, what you are really doing
is to rotate π radians counterclockwise about the
origin of the real axis. When you multiplied by
−1 again, you rotates once again and returns to
the original point, i.e., finally you are rotate 2π ra-
dians counterclockwise about origin real axis. In
fact, any number can be multiplied by (−1)2 with-
out being modified. Now, is there any number that
multiplied by itself remains at −1? Notwithstand-
ing how much you try to find such number you will
notice that there is no real number that satisfies

this restriction. Jean-Robert Argand found a way
to solve that, if the multiplication by −1 rotates π
radians about the origin of real axis and multiply-
ing (−1)2 returns to original number, then, there
exists a number called i, such that i2 = −1 hence
i means rotate π/2 radians counterclockwise about
the origin of the real line. On the other hand, this
means that such new number i lies outside the real
line. Indeed this allows leaving the real axis and
come into a plane called the complex plane or Ar-
gand’s plane.

The number i =
√
−1 is called imaginary and

has some interesting particularities. If i is squared
i2 = −1 and if else is cubed i3 = −i and even more
i4 = 1 and i5 = −1 and so on. Every positive
integer k such that ik fall into four possible values
(1, i,−1,−i) as show in the following table:

ik k sequence
1 0 4 8 12 ... n 4n
i 1 5 9 13 ... n 4n+ 1
−1 2 6 10 14 ... n 4n+ 2
−i 3 7 11 15 ... n 4n+ 3

In this sense, may be possible to reduce any ik to
one of four options by matching k with the sequence
it belongs to. Thus it holds that the remainder af-
ter dividing by k is zero. For instance, we want to
calculate i20, then it is necesary to find the sequence
that divides 20 leaving zero as remainder, compar-
ing with the first sequence 20 = 4n we see that 20
mod 4 = 0 hence i20 = 1. Even more, k could be
greater e.g., i65535, in this case it is the same pro-
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cedure, 65535 = 4n but now 65535 mod 4 = 3 and
n 6∈ Z, for this reason i65535 6= 1 then we need to
compare 65535 = 4n + 1 and so 65534 mod 4 = 2
therefore n 6∈ Z, again i65535 6= i, now we going to
compare 65535 = 4n + 2 then 65533 mod 4 = 1
so that i65535 6= −1, finally we get 65535 = 4n + 3
then 65532 mod 4 = 0 and n ∈ Z, we have found
that i65535 = −i. Thus it is posible to reduce ik

where k ∈ Z+.

2 Overview.

We define a complex number as follows:

z = x+ iy (1)

Where:

x Is the real part of z i.e., x ∈ R

iy Represents the imaginary part of z where y ∈ R
and i ∈ I

z Is the complex number, where z ∈ C

Complex numbers are a combination of both real
and imaginary parts, these numbers include the
field of real numbers i.e., the field of real numbers
is a subfield of the field of complex numbers. An
other way of representing a complex number could
be (x, y). We will now define a couple of complex
numbers z1 = a + ib and z2 = c + id and their
properties are:

z1 = z2 ↔ {a = c and b = d}
z1 + z2 = (a+ c) + i(b+ d)
z1z2 = (ac− bd) + i(ad+ bc)
z1 = a− ib

(2)

z1 is called complex conjugate and represents a
reflection on the real axis, it also has some partic-
ularities:

z1 + z2 = z1 + z2

z1 · z2 = z1 · z2

Now, we may define the complex division as well:

z1
z2

=
z1
z2
· z2
z2

z1
z2

=
(a+ ib

c+ di

)(c− id
c− id

)
z1
z2

=
(ac+ bd) + i(bc− ad)

c2 + d2

To understand these concepts we present the foll-
wing simple example:

z1 = 2 + i1.5
z2 = −1 + i2.4

This numbers could be represented as points on
the complex plane:

Figure 1: You only need a number for representing
a point on the complex plane.

Now, we going to show some operations with
them. The complex conjugate:

z1 = 2− i1.5
z2 = −1− i2.4

Complex addition:

z1 + z2 = (2 + i1.5) + (−1 + i2.4)
z1 + z2 = (2− 1) + i(1.5 + 2.4)
z1 + z2 = 1 + i3.9
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Figure 2: Complex addition represents the triangle
inequality.

Complex multiplication and division:

z1z2 = (2 + i1.5)(−1 + i2.4)
z1z2 = ((2)(−1)− (1.5)(2.4)) + i((2)(2.4) + (−1)(2.5))
z1z2 = −5.6 + i3.3

z1
z2

=
( 2 + i1.5
−1 + i2.4

)(−1− i2.4
−1− i2.4

)
z1
z2

=
(−2 + 3.6) + i(−4.8− 1.5)

1 + 5.76
z1
z2

=
1.6− i6.3

6.76
z1
z2

= 0.23668639053− i0.93195266272

Figure 3: In complex multiplication, modulus of
numbers are multiplied and their arguments are
added.

You can see that there are a few terms which
were not defined: The modulus |z| and argument
zθ which sometimes is called the phase. Modulus
of a complex number is a positive real number. |z|

measure the length of z to origin. The term modu-
lus was introduced by Jean-Robert Argand and it
is defined as:

|z| = |x+ iy| =
√
x2 + y2

Geometrically speaking, a modulus of the differ-
ence of two complex numbers is the distance be-
tween two points. If only one of them is z0 = 0+ i0
then the modulus is the distance of a point to the

origin. For instance, |z| = | 12 +i
√

3
2 | =

√
1
4 + 3

4 = 1.
Particulary this is a norm, so that complex plane
is a normalized vectorial space of finite dimension,
hence is a metric space whose metric is given by
the application:

C× C→ R+, (z1, z2) 7→ |z2 − z1|

Where |z2 − z1| is a distance. Modulus has the
following properties:

|z| ≥ 0
|z| = 0↔ z = 0
|z1 + z2| ≤ |z1|+ |z2|
|z1 − z2| ≥ ||z1| − |z2||
|z1z2| = |z1||z2|∣∣∣∣z1z2

∣∣∣∣ =
|z1|
|z2|

, z2 6= 0

|z̄| = |z| = | − z̄| = | − z|

z · z̄ = |z|2 (3)

Turning back to our example, we could know the
modulus and argument of the complex numbers de-
fined previously as follows:

|z1| =
√

4 + 2.25 =
√

6.25 = 2.5

|z2| =
√

1 + 5.76 =
√

6.76 = 2.6

|z1 + z2| =
√

1 + 15.21 =
√

16.21 = 4.02616
|z1|+ |z2| = 2.5 + 2.6 = 5.1

|z1z2| =
√

31.36 + 10.89 =
√

42.25 = 6.5
|z1||z2| = (2.5)(2.6) = 6.5∣∣∣∣z1z2

∣∣∣∣ =
∣∣∣∣1.6− i6.36.76

∣∣∣∣ = 0.96153846

|z1|
|z2|

=
2.5
2.6

= 0.96153846
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Now let is check that the arguments of two com-
plex numbers are added when the numbers are mul-
tiplied. To do this, we will define θ1 and θ2 as the
argument of z1 and z2 respectively and ϕ as the
argument of z1z2.

θ1 = tan−1
(

1.5
2

)
= 0.643501108 = 36.8◦

θ2 = tan−1
(

2.4
−1

)
= −1.176005207 = −67.38◦

180◦ + θ2 = 112.6◦

ϕ = tan−1
(

3.3
−5.6

)
= tan−1(−0.589285714)

ϕ = −0.532504098 = −30.51◦

180◦ + ϕ = 149.4◦

36.8◦ + 112.6◦ = 149.4◦

0.64350110 + (−1.17600520) = −0.53250409

Now we know the concept of modulus and argu-
ment, then we may also define a complex number
as:

z = |z|eiθ (4)

Both representations are equivalent, i.e., this defi-
nition is equivalent to the equation defined by (1),
to verify this we will prove the equation defined by
(3).

zz̄ = |z|2

zz̄ = |z|2ei(θ−θ)

zz̄ = |z|2eiθe−iθ

zz̄ = |z|eiθ|z|e−iθ

zz̄ = |z||z̄|

Wich is the same as:

zz̄ = |z|2

zz̄ = (
√
x2 + y2)2

zz̄ = x2 + y2

zz̄ = x2 + y2 + i(xy − xy)

zz̄ = x2 − ixy + ixy + y2

zz̄ = (x+ iy)(x− iy)
zz̄ = |z||z̄|

3 Some interesting features.

We know that a complex number can be rep-
resented as a modulus(distance) and a argu-
ment(angle), so you could think that there is a man-
ner of rotate a complex number by increasing the
angle, this is correct. Moreover, it is possible rotate
a complex number only using real numbers. If you
multiply a complex number by i, you rotate it π/2
radians counterclockwise, this rotation and can be
expressed as z ·i = (x+iy)(i) = −y+ix in a matrix
representation:

(
0 −1
1 0

)(
x
y

)
=
(
−y
x

)

Now, we consider a complex number which is in-
scribed on the unit circle and has a little increment
on imaginary axis i.e, w = 1 + iε, ε > 0. Whenever
any complex number is multiplied by w, undergoes
a little rotation counterclockwise, but ε should be
consider very small to minimize any increase in the
modulus.

z · w = (x+ iy)(1 + iε)
z · w = (x− yε) + i(y + xε)

Also can be written in matrix representation:

(
1 −ε
ε 1

)(
x
y

)
=
(
x− yε
y + xε

)
Small rotation.

Which is a matrix whose elements consist entirely
of real numbers. By this way, you can rotate a
complex number. If you want a greater rotation,
you should multiply

(
1 −ε
ε 1

)
again.

(
1 −ε
ε 1

)(
1 −ε
ε 1

)(
x
y

)
Two small rotations.

For instance, we want to rotate the complex num-
ber z = 1+i2 where x = 1, y = 2 and we will to con-
sider ε = 0.1, then we get the following outcomes

when we multiplies
(

1 −ε
ε 1

)(
x
y

)
many times. :
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n x y
1 1.9 1.2
2 1.78 1.39
3 1.641 1.568
4 1.4842 1.7321
5 1.31099 1.88052
6 1.122938 2.011619
7 0.9217761 2.1239128

These numbers are showed at fig.4, you can no-
tice that the z point is rotating counterclockwise
according to be multiplied by the real matrix.

Figure 4: Rotating a complex number by means of
multiplying by a Real matrix.

This way of rotating a complex number has a
drawback when ε is not considered very small,
recalling complex multiplication definition of two
numbers we get that both modulus are multiplied
too, then obviously |(1+iε)| > 1 when ε > 0, there-
fore any complex number that is multiplied under-
goes a tiny increment at its modulus. It seems that
is necesary to find a number such that has unit
modulus. We could find such a number by rotating
z = 1 + i0 counterclockwise. This is nothing but
multiply the vector (1, 0) by 2D rotation matrix as
follows: (

cos θ − sin θ
sin θ cos θ

)(
1
0

)
Althought it is yields a two dimensional vector
(cos θ, sin θ), may be represented by the complex
number w = cos θ + i sin θ which has a unit modu-
lus, therefore any complex number which is multi-
plied by w remains its length and undergoes a rota-
tion of θ about the origin. Regardless that the sym-
bol θ is often used to represent an angle in degrees,

we use it to represent an angle in radians. Now, we
going to represent it according to the equation (4):

w = cos θ + i sin θ = eiθ

Inasmuch as we know that |w| = 1, i.e., w is the
point on the unit circle at θ angle, then w may be
used as bona fide rotation operator, furthermore it
makes way for one of the most interesting assever-
ations of this document:

eiθ = cos θ + i sin θ

In spite of the fact that we defined a complex
number z = |z|eθ out of the blue prevously, and
now, we define that eiθ = cos θ+i sin θ, is worth the
trouble to make a formal demonstration. So that,
recalling from Taylor’s Theorem, which, when is
centered at the origin, is sometimes called Maclau-
rin’s series, we get some trigonometrical functions
called exponential, cosine and sine, which are rep-
resented by power series as follows:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . .

Each of these functions f(x) must be an infinitely
differentiable function, whose values and values of
all of its derivatives, exist at zero. Perhaps you al-
ready could figure out that there is a relationship
between the equations described above, neverthe-
less is not entirely clear. Now, putting x equal
to real value θ in both sine and cosine functions
and replacing x by iθ in the exponential function it
seems that exhibits a closer relation.

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ . . .

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ . . .

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ . . .

Therefore:

eiθ = cos θ + i sin θ (5)
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The equation (5) have some interesting features.
One of them is that sinπ = 0 and cosπ = −1.
This fact was discovered by Leonhard Euler around
1740, and it is called Euler’s Formula in his honour.
Now, it looks almost obvious:

eiπ + 1 = 0

This amazing formula exhibits a remarkable con-
nection between the numbers e, i, π, 1 and 0. This
kind of stuff is one of the reasons why the mathe-
matics are beautiful.

4 Complex functions

Some of the properties of a real function are shown
when is drawn. In case of complex function is not
straightforward because the resulting values are not
on a line, but on a plane. For this reason, it is fea-
sible to draw both planes separately. Whilst func-
tions of real numbers are a cartesian product of two
planes which yields a two dimensional graph, the
complex function representation requires a carte-
sian product of two planes, hence it is necesary
some way to represent a four dimensional graph or
simply show both planes separately. Obviously is
more widely acepted the second option. This spe-
cial case of depict functions is called maping. In
the meantime, we define a complex function as the
cartesian product of two complex planes that takes
a complex number as argument and produces an-
other complex number which has real functions as
coefficients. Formally speaking:

f : C× C 7→ C

Do not forget that a complex number has two
real numbers representing both real and imaginary
parts, therefore:

z = x+ iy

f(z) = a+ ib

a = u(x, y)
b = v(x, y)

To explain this we will see the following example:

z = x+ iy

f(z) = z2

f(z) = (x+ iy)2

f(z) = x2 + 2ixy − y2

f(z) = (x2 − y2) + i(2xy)
f(z) = u(x, y) + iv(x, y)

u(x, y) = x2 − y2

v(x, y) = 2xy

Now and then it is commonly wondering which
numbers ought to be considered for be maped by
the function. The figure 5 shows a centered grid
of complex numbers, each number is represented
as a point in the plane and all of they are linked
together by forming a rectangular grid.

Figure 5: Centered grid of complex numbers

Now, it is necesary to evaluate each and every
point of the grid (i.e., a complex number) and plot
it on a new complex plane. In this manner you
can notice that a complex function is nothing but
a transformation which takes a complex number on
the plane and takes it to another place on the same
plane. For ilustrative purposes we consider f(z) =
z2. Thus, the complex number 4+ i2 become 12+
i16 and so on. We will apply this function to our
grid and pay atention to its consecuences.
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Figure 6: Complex squared f(z) = z2 REC-C code:
(PP*;) f

We use a comptuer software for ploting complex
functions named REC-C which was created by Dr.
Harold V. McIntosh for the NextStep Operating
System. If you have a chance of get a copy, this is
our code template:

Figure 7: Code Template for the REC-C examples

Figure 8: Complex cubed f(z) = z3 REC-C code:
(PPP**;) f

Figure 9: Complex exponential f(z) = ez REC-C
code: (PE;) f

Figure 10: Complex loagarithm f(z) = Log(z)
REC-C code: (PL;) f

Figure 11: Complex fractional linear f(z) =
z + 1
z − 1

REC-C code: (PF;) f or (PX+PXD-/;) f
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Figure 12: Complex hyperbolic tangent f(z) =
tanh z REC-C code: (PT;) f

Figure 13: Complex Inverse f(z) = 1
z REC-C code:

(PX&/;) f

Figure 14: Complex Inverse Squared f(z) = 1
z2

REC-C code: (PP*X&/;) f

References

[1] Churchill R.V., Brown J.W.& Varhey R.F.
Variable Compleja y sus Aplicaciones,
McGraw-Hill, 2nd ed, 1979.

[2] McIntosh, Harold V.,Complex Analysis, Depar-
tamento de Aplicación de Microcomputadoras,
Instituto de Ciencias, Universidad Autónoma
de Puebla, Puebla, México 2001.
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