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We study a two-dimensional cellular automaton (CA), calledDiffusion
Rule(DR), which exhibits diffusion-like dynamics of propagating patterns.
In computational experiments we discover a wide range of mobile and
stationary localizations (gliders, oscillators, glider guns, puffer trains,etc),
analyze spatio-temporal dynamics of collisions between localizations, and
discuss possible applications in unconventional computing.
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1 INTRODUCTION

In our previous studies on minimal cellular automaton (CA) models of
reaction-diffusion chemical system we constructed [4] a binary-cell-state
eight-cell neighborhood 2D CA model of a quasi-chemical system with one
substrate, state 0, and one reagent, state 1. In that model chemical reactions
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were represented by semi-totalistic transition rules. Every cell switches from
state 0 to state 1 depending whether sum of neighbors in state 1 belongs to
some specified interval or not. A cell remains in state 1 if sum of neighbors in
state 1 belongs to another specified interval.

From 1296 cell-state transition rules, we selected a set of rules with complex
behavior [4]. Amongst the complex rules, namely inG-class of morphological
classification [4], we located so-called Diffusion Rule. CA governed by this
rule often exhibits slowly non-uniformly growing patterns, resembling diffu-
sive patterns in chemical systems with non-trivial coefficients of diffusion, or
reaction-dependent diffusion coefficients, so the name of the rule.

The rule simulates sub-excitable [36] medium-like mode of perturbation
propagation—cell in state 0 takes state 1 if there are exactly two neighbors in
state 1, otherwise the cell remains in state 0, and, conditional inhibition—cell
in state 1 remains in state 1 if there are exactly seven neighbors in state 1,
otherwise the cell switches to state 1.

In present paper we are trying to answer the following questions. Is there
a reaction-diffusion binary-state CA that express complex dynamic? Can we
demonstrate that CA exhibits non-stationary growth of reaction-diffusion pat-
terns? Do stationary or mobile generators of localizations, glider guns, exist
in binary-state reaction-diffusion CA? Can the reaction-diffusion CAsimulate
an effective procedure and therefore be universal?

CA with space-time dynamics similar to that in spatially extended chem-
ical systems are studied from early days of CA theory and applications [35],
however most rules discovered so far lack minimality (some of the rules
employ dozens of cell-states). Methods of selecting the rules also widely vary
depending on theoretical frameworks, e.g. probabilistic spaces [20, 38] and
genetic algorithms [14, 32]. Therefore, we envisage a strong need for a sys-
tematic analysis of propagating patterns like those observed in the Diffusion
Rule. The propagating patterns are of upmost importance in modern com-
puter science because such patterns play a vital role in developing novel and
emerging computing paradigms and architectures, particularly collision-based
computing [1,3,23].

We must mention that various authors have already obtained pioneering
results in the studied rule. Magnieret al. discovered three primary gliders [33].
David Eppstein found four gliders known, already incorporated in our frame-
work, and four new gliders which were novel for us (Fig. 4 (q) (t) and (u)).1 The
glider traveling along diagonals of the lattice (Fig. 4 (v)) was firstly recorded
by Amling in 2002 (see Eppstein’s web site). Finally, a glider gun and three
puffer trains were discovered by Wótowicz.2

1See Eppstein’s findings at http://fano.ics.uci.edu/ca/rules/b2s7/
2http://www.mirwoj.opus.chelm.pl/ca/rules/life_2.gif
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Diffusion Rule CA is just one of many complex CA3 exhibiting mobile
localizations. Other famous examples include semi-totalistic rules as the Game
of Life [10, 17], Brain’s-brain and Critters rules [34], High Life [9], Life
1133 [22], LifeWithout Death [18], and Life variantB35/S236.4 Other variant
is with Larger than Life [16] and the Beehive and Spiral rules hexagonal
CA[5,6,39], more recent candidates were proposed by George Maydwell with
Hexagonal Life and Hexagonal Long Life rules.5 Amongst 3D binary state
CA supporting gliders Life 4555 and Life 5766 by Carter Bays [7,8] are most
widely known. In 1D there are Rule 110 [13,26,30,37] and Rule 54 [11,21,25]
CA, which support an impressive range of mobile localizations.

Our paper is structured as follows. In Sect. 2 we introduce basic concepts
of CA model under investigation. Section 3 introduces results of statistical
analysis of the Diffusion Rule using mean field theory. In Sect. 4 we present
basic structures discovered in the Diffusion Rule CA. Section 5 compiles a
catalogs of non-trivial interactions between mobile localizations, which could
be used to designing basic elements of collision-based computers. In Sect. 6
we highlight our achievements in analysis of the Diffusion Rule and prospects
for future studies.

2 BASIC NOTATIONS

We study family of 2D binary-state cellular automaton (CA) defined by tuple
〈Z2, �, u, f 〉, whereZ is the set of integers, every cellx ∈ Z

2 has eight
neighbors, orthogonal and diagonal (i.e. classical Moore’s neighborhood)
u(x) = {y ∈ Z : x �= y and|x − y| ≤ 1}, � = {0, 1} is the set ofstates, and
f is a local transition function defined as follows:

xt+1 = f (u(xt ))

=
{

1, if (xt = 0 andσ t
x ∈ [θ1, θ2]) or (xt = 1 andσ t

x ∈ [δ1, δ2])
0, otherwise

(1)

whereσ t
x = |{y ∈ u(x) : yt = 1}|, andθ1, θ2, δ1, δ2 are some fixed parameters

such that 0≤ θ1 ≤ θ2 ≤ 8 and 0≤ δ1 ≤ δ2 ≤ 8.
We can write the rule asR(δ1δ2θ1θ2) or like Bθ1 · · · θ2/Sδ1 · · · δ2 more

traditional code. Also, the rule can be interpreted as a simple discrete model

3http://uncomp.uwe.ac.uk/genaro/otherRules.html
4http://www.ics.uci.edu/∼eppstein/ca/b35s236/
5Several interesting candidates in hexagonal representation are proposed by Andrew Wuen-
sche usingDDLAB at http://www.ddlab.com/ and by Maydwell usingSARCASimat http://www
.collidoscope.com/ca/
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of a quasi-chemical system with substrate ‘0’ and reagent ‘1’, where[θ1, θ2]
is an interval of reaction, or association between substrate and reagent, and
[δ1, δ2] is an interval of dissociation. The family of rules includes Conway’s
Game Life, when intervals[δ1, δ2] and[θ1, θ2] are interpreted as intervals of
survival and birth, respectively.

In our previous paper [4] we morphologically classified all 1296 rules, and
studied how changes in parametersR(δ1δ2θ1θ2) of cell-state transition rule
influence space-time dynamics. For example, we discovered [4] a small subset
of rulesLife 2c22,6 2 ≤ c ≤ 8, which could be interpreted as quasi-chemical
precipitating systems. For parameter set[θ1, θ2] = [22] [1, 4], the system is
transformed into 2+-medium, CA model of excitable system in sub-excitable
mode.

We have found a cluster of semi-totalistic rules supporting structures of the
Diffusion Rule. They areB2/S2 . . . 8 calledLife dc227 whered andc take
values between 2 and 8, andd ≤ c. Therefore, we found that the ruleB2/S7
or R(7722) exhibits most reach dynamics of localized patterns amongst all
the rules studied by us. Rules of the local transition are simple:

1. Acell in state 0 will take state 1 if it has exactly two neighbors in state 1,
otherwise cell remains in state 0.

2. A cell in state 1 remains in state 1 if it has exactly seven neighbors in
state 1, otherwise cell takes state 0.

3 MEAN FIELD APPROXIMATION

Mean field theory is a proved technique for discovering statistical properties
of CA without analyzing evolution spaces of individual rules [12,20,28]. The
method assumes that elements of the set of states� are independent, uncor-
related between each other in the rule’s evolution space. Therefore we can
study probabilities of states in neighborhood in terms of probability of a sin-
gle state (the state in which the neighborhood evolves), thus probability of
a neighborhood is the product of the probabilities of each cell in the neigh-
borhood. Using this approach we can construct mean field polynomial for a
semi-totalistic evolution rule [24] as follow:

pt+1 =
δ2∑

v=δ1

(
n − 1

v

)
pv+1

t qn−v−1
t +

θ2∑
v=θ1

(
n − 1

v

)
pv

t qn−v
t (2)

wheren represents the number of cells in neighborhood,v indicates how
often state 1 occurs in Moore’s neighborhood,n − v shows how often state 0

6http://uncomp.uwe.ac.uk/genaro/Diffusion_Rule/life_2c22.html
7http://uncomp.uwe.ac.uk/genaro/Life_dc22.html



“JCA” — “JCA_0017” — 2010/3/24 — 12:32 — page 293 — #5

The Diffusion Rule 293

(a) (b) (c)

FIGURE 1
Three random initial densities for the Diffusion Rule: (a) 0.004, (b) 0.013 and (c) 0.995
respectively, on lattices of 200× 200 to 18 generations.

occurs in the neighborhood,pt is a probability of cell being in state 1,qt is a
probability of cell being in state 0.

On the basis of outcomes of computational experiments we can sug-
gest intervals of extreme densities of initial random configurations which
leads to the emergence of localizations in the Diffusion Rule. In the lower
limit best densitiesd are 0.004< d < 0.015 and in the upper limit they are
0.992< d < 0.997 for the first 15–20 steps of evolution (Fig. 1). CA start-
ing its evolution in random configuration with lower density of 1-states
exhibit stationary or mobile self-localizations (like gliders or oscillators) at
the beginning of the evolution, however in many cases collisions between
mobile localizations leads to catastrophes, when 1-state patterns spread all
over the lattice. Random initial configurations with higher (upper limit) den-
sity of 1-states produce either vanishing reactions between localizations or
symmetrical growing patterns emerged as unions of two or more gliders.

Thus, the mean field polynomial for the Diffusion Rule is following:

pt+1 = 8p8
t qt + 28p2

t q
7
t (3)

The fixed point is 0.236 that represents configurations with large density of
1-states emerging from any random initial condition (we should note that the
fixed point for Conway’s Game of Life is 0.37); this represents global density
of 1-states necessary for evolution dynamics to stabilize. Also, we can see an
unstable fixed point 0.05 (Fig. 2), that implies the existence of regions with
unpredictable behavior or complex dynamic [28].

Thus,p = 0 is a super-stable point, although it is quite close to the unstable
point. The super-stable is important, as it means a quiescent substrate, i.e., the
state where live all the structures. Since mean field theory is just an initial
approximation, it ought to be worthwhile to gather up some Monte Carlo
approximations for a few generations just to see if the first estimate maintains
itself, more or less.
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FIGURE 2
Diagram of mean field polynomial for the Diffusion Rule.

We must also mention that the probability to find ‘interesting’ behavior is
very low, about 0.05. Perhaps, this may be the reason why the Diffusion Rule
was not studied before – when observing evolution from random configuration
one more likely (with probability 0.3) to encounter a catastrophe (e.g. when
placing three cells anywhere in Moore’s neighborhood, just not in one line)
then stable mobile localization.

4 THE DIFFUSION RULE UNIVERSE

In present section we uncover a range of basic structures, stationary and mobile
localizations, generators of localizations and polymer-like structures formed
of the mobile localizations.

4.1 Mobile self-localizations
In computational experiments with the Diffusion Rule CA we discovered
26 mobile self-localizations—gliders or particles—traveling orthogonally or
diagonally in the lattice. Properties of the gliders, including volume, speed,
direction of motion are listed in Table 1.

Configurations of minimal gliders and compound gliders are shown in
Figs. 3 and 4, respectively. From Table 1, we can see that 96% of gliders move
orthogonally, and thatg23, g24, g25 andg26 are the largest gliders in the
family of mobile localizations. First column in the table gives names of gliders.
Second column in Table 1 represents glider’s volume calculated as number
of cells occupied by the glider. Third and fourth columns are translation and
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glider volume translation period speed weight move

g1 8 1 1 c/1 4 orthogonal
g2 12 1 1 c/1 4 orthogonal
g3 12 1 1 c/1 4 orthogonal
g4 12 1 1 c/1 4 orthogonal
g5 30 4 4 c/1 7 orthogonal
g6 30 4 4 c/1 7 orthogonal
g7 45 4 4 c/1 14 orthogonal
g8 45 4 4 c/1 14 orthogonal
g9 56 4 4 c/1 14 orthogonal

g10 56 4 4 c/1 14 orthogonal
g11 70 4 4 c/1 24 orthogonal
g12 72 4 4 c/1 14 orthogonal
g13 75 4 4 c/1 18 orthogonal
g14 84 4 4 c/1 24 orthogonal
g15 96 4 4 c/1 18 orthogonal
g16 96 4 4 c/1 22 orthogonal
g17 96 4 4 c/1 26 orthogonal
g18 96 4 4 c/1 30 orthogonal
g19 112 4 4 c/1 26 orthogonal
g20 126 4 4 c/1 26 orthogonal
g21 144 4 4 c/1 26 orthogonal
g22 144 4 4 c/1 30 orthogonal
g23 210 4 4 c/1 38 orthogonal
g24 338 2 4 c/2 52 orthogonal
g25 405 2 4 c/2 79 orthogonal
g26 576 2 8 c/4 75 diagonal

TABLE 1
Properties of gliders in the Diffusion Rule CA

(a) (b) (c) (d)

FIGURE 3
Configurations of minimal, or primary, gliders in the Diffusion Rule: (a)g1 glider, (b)g2 glider,
(c) g3 glider and (d)g4 glider.

period. Fifth column shows the speed= c/period, wherec is the maximum
speed. Sixth column is the weight that represents the number of cells with
state 1 within glider’s volume. The last column indicates whether or not glider
moves along columns and rows, or diagonals.

There are two types of gliders—primaryandcompound[26,38]: a primary
glider can not be decomposed into smaller mobile localizations, a compound
glider is made of at least two primary gliders.

4.2 Oscillators
The Diffusion Rule CA exhibits five types of stationary localizations known
as oscillators. The two most common flip-flops and three blinker patterns are
shown in Fig. 5.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v)

FIGURE 4
Twenty two compound gliders in the Diffusion Rule CA: (a)g5, (b) g6, (c) g7, (d) g8, (e) g9,
(f) g10, (g) g11, (h) g12, (i) g13, (j) g14, (k) g15, (l) g16, (m) g17, (n) g18, (o) g19, (p) g20,
(q) g21, (r) g22, (s)g23, (t) g24, (u) g25 and (v)g26 gliders, respectively.

Flip-flop configurations areo1 ando2 oscillators both structures flipping
at 45◦. Blinkers of period four areo3, o4 ando5 oscillators. Table 2 shows
basic characteristics of each oscillator.

Some of the oscillators and their assembles act as eaters, i.e. stationary
patterns that annihilate gliders colliding to them (see examples of collisions
in Sect. 5.3).
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(a) (b) (c) (d) (e)

FIGURE 5
Five oscillators in the Diffusion Rule CA: (a)o1 and (b)o2 are flip-flops, (c)o3, (d) o4 and
(e)o5 are blinkers, respectively.

oscillator volume period weight

o1 4 2 2
o2 9 2 3
o3 10 4 4
o4 16 4 4
o5 30 4 8

TABLE 2
Properties of oscillators in the Diffusion Rule CA

4.3 Avalanches
Avalanches are novel structures, have not described before in related stud-
ies. They are assembles of adjacent gliders that cause explosive growth of
rhomboid shaped patterns with deterministic edges and quasi-chaotic interior.
Avalanches can be constructed from various compositions of adjacent gliders.

Figure 6 shows an avalanche produced in composition of twog1 glid-
ers, adjacent at 90◦; this avalanche pattern grows diagonally inside the third
quadrant. The minimal volume of an avalanche is 4× 4 with eight cells in
state 1.

(a) (b) (c)

FIGURE 6
Two g1 gliders produce an avalanche pattern: (a) initial condition, (b) configuration after 15 steps
of evolution and (c) configuration after 200 steps of evolution.
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(a) (b)

FIGURE 7
Construction of the symmetrical avalanches: (a) symmetrical growth initiated by twog4 gliders,
configuration at 237th step of evolution, (b) avalanche pattern with non-trivial internal symmetries
produced by assembly of twog2 glider and twog3 gliders, configuration at 237th step of evolution.

One can use even number of gliders to construct symmetrical avalanches,
two examples are shown in Fig. 7.

4.4 Puffer trains
Apuffer train is a mobile localization which generate (leaves traces) of station-
ary localizations along its motion path. There are 16 known types of stable
puffer trains (which produce oscillators) in the Diffusion Rule CA. Basic
properties of puffer trains are shown in Table 3.

puffer train produce volume translation period speed weight move

p1 o3 30 4 4 c/1 7 orthogonal
p2 o1 35 4 4 c/1 8 orthogonal
p3 o1 42 4 4 c/1 9 orthogonal
p4 o1 42 4 4 c/1 9 orthogonal
p5 o1 42 4 4 c/1 10 orthogonal
p6 o1 54 4 4 c/1 13 orthogonal
p7 o1 56 4 4 c/1 9 orthogonal
p8 2×o1 63 4 4 c/1 14 orthogonal
p9 o1 63 4 4 c/1 15 orthogonal

p10 2n×o1 65 4 4 c/1 14 orthogonal
p11 2×o1 80 4 4 c/1 17 orthogonal
p12 o1 84 4 4 c/1 11 orthogonal
p13 2×o1 90 4 4 c/1 11 orthogonal
p14 2×o1 105 4 4 c/1 15 orthogonal
p15 2n×o1 120 4 4 c/1 28 orthogonal
p16 o1 ∨ ε 242 4 4 c/1 22 orthogonal

TABLE 3
Characteristics of puffer trains in the Diffusion Rule CA
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

FIGURE 8
Fifteen puffer trains observed in evolution of the Diffusion Rule CA: (a)p1, (b)p2, (c)p3, (d)p4,
(e) p5, (f) p6, (g) p7, (h) p8, (i) p9, (j) p10, (k) p11, (l) p12, (m) p13, (n) p14 and (o)p15
puffer trains, respectively.

(a) (b) (c)

(d) (e) (f)

FIGURE 9
Specialp16 puffer train similar to spaceships.

A particular case of puffer train is shown in Fig. 9. This puffer bears frag-
ments ofg4 glider. All configurations of the puffer are displayed in Fig. 9, and
there we can see that configurations shown in Fig. 9(c) (d) (e) and (f) can be
interpreted as spaceships.

Moreover, the Diffusion Rule CA exhibits dozens of non-stable puffer
trains. In the Fig. 10 we see five non-stable puffer trains, which produce
asymmetrically growing, or quasi-chaotic, patterns. All discovered non-stable
puffer trains have speed 1/c and period four.

4.5 Mobile glider guns
Glider guns are localized patterns that periodically lose their stability and give
birth to traveling mobile localizations, gliders. In computational experiments
we discovered twelve types of mobile glider guns in the Diffusion Rule CA.
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(a) (b) (c) (d) (e)

FIGURE 10
Some non-stable puffer trains.

gun produce volume translation period speed weight move

gun1 g1 30 4 4 c/1 7 orthogonal
gun2 g4 50 4 4 c/1 9 orthogonal
gun3 g4 50 4 4 c/1 9 orthogonal
gun4 g4 60 4 4 c/1 9 orthogonal
gun5 g4 60 4 4 c/1 9 orthogonal
gun6 g4 72 4 4 c/1 15 orthogonal
gun7 g2 ∧ g3 72 4 4 c/1 16 orthogonal
gun8 2×g4 80 4 4 c/1 14 orthogonal
gun9 2×g4 90 4 4 c/1 14 orthogonal

gun10 g1 ∧ g4 143 4 4 c/1 15 orthogonal
gun11 2×g1 154 4 4 c/1 24 orthogonal
gun12 (2×g4) ∨ g4 176 4 4 c/1 19 orthogonal

TABLE 4
Characteristics of glider guns in the Diffusion Rule CA. Second column of the table
shows what type of glider each glider gun produces

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

FIGURE 11
Configurations of glider guns in the Diffusion Rule CA.

Basic parameters of the twelve glider guns are shown in Table 4 and gun’s
configurations in Fig. 11. The most remarkable feature is that all primary
gliders can be produced by glider guns. Some glider guns can generate two
types of gliders at once, thusgun7 (Fig. 11f) generatesg2 andg3 gliders at
the same time, however both gliders travel coupled in pairs.

The generatorgun12 can produce one or twog4 gliders, see examples in
Fig. 12. This gun is also extendable, the extension is determined by the number
of o1 oscillators (which should be more then two). Positions of oscillators
determine number of glider streams generated bygun12.
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(a) (b) (c)

FIGURE 12
Extendable glider gun in the Diffusion Rule CA.

So far we did not find glider guns which produce diagonally-moving
streams of gliders, neither guns generating compound gliders or station-
ary guns.

4.6 Glider gun and puffer train
There is at least one special mobile structure that combines in itself properties
of both glider gun and puffer train. Figure 13 shows glider gun producingg1
glider ando1 oscillator each 4th step of CA evolution. This puffer-gun moves
orthogonally, has a volume of 70 cells and weights 12 units.

4.7 Avalanche gun
Avalanche gun is another remarkable example of mobile generators (Fig. 14).
The mobile gun produces an avalanche every 4th step of CA evolution.

However, life-time of the gun producing each avalanche is short: when
avalanche produced by the gun it grows and then destroys the next avalanche
produced.

t=0 t=1 t=3t=2 t=4

FIGURE 13
Configurations of puffer-gun in the Diffusion Rule CA.

t=0 t=1 t=3t=2 t=4

(a)

t=40

(b)

FIGURE 14
Configuration of an avalanche gun in the Diffusion Rule CA. (a) production of twog1 gliders
to 90◦, (b) development of quasi-chaotic reaction that destroys next avalanche conserving the
avalanche gun.
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5 COLLISIONS BETWEEN LOCALIZED PATTERNS

The Diffusion Rule CA combines high-degree unpredictability with enor-
mously rich dynamics of collisions between mobile and stationary objects.
This section studies the outcomes of the collision reactions.

5.1 Forming diffusing patterns by collisions
Gliders colliding in the Diffusion Rule CAcan produce an explosively growing
diffusion-like pattern, the diffusive patterns do usually have non-stationary
boundaries and they exhibit quasi-chaotic internal dynamics.

Two most distinct examples are shown in Fig. 15. In first example
(Fig. 15(a)),g4 glider collides withg3 andg2 gliders, diffusion pattern pro-
duced is ‘lead’by three gliders and puffer train. In second example (Fig. 15(b)),
two g4 gliders collides with twog1 gliders. The reaction produces multiple
gliders, puffer trains, oscillators, and even vertical glider guns during their
collision dynamics.

5.2 Reactions between propagating patterns
5.2.1 Soliton-like reaction
In certain initial conditions gliders collide similarly to solitons, namely they
restore their structure and velocity vector after collisions. In Fig. 16 we can see
snapshots of the head-on collision dynamics between twog4 gliders (begin
at even distance before collision). When the gliders collide they temporarily
lose their stability, produce varieties of transient structures. After few steps of
evolution the gliders are restored and transient structures are annihilated.

(a) (b)

FIGURE 15
Examples of diffusion-like patterns produced in collision between gliders in the Diffusion Rule
CA. (a) pattern produced at 260th step of evolution after collision betweeng4, g2 gliders and
g3 glider, (b) pattern produced at 260th of evolution after collision between twog4 gliders and
two g1 gliders.
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t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

t=8 t=9 t=10 t=11 t=12

t=13 t=14 t=15 t=16

FIGURE 16
Soliton-like reaction between twog4 gliders.

At the moment, there is only a reaction soliton-like perhaps some others
examples exist with more bigger gliders but initially have not more examples.

5.2.2 Eater reaction
Eaters are stationary localizations which destroy gliders colliding into them.
The most simple eater is built witho1 oscillator. This eater destroysg1 gliders
but is shifted four cells along the glider’s initial direction of motion. Both
g1 and g2 gliders are destroyed when they collide with the eater built of
o3 oscillator. In Fig. 17(a) you can see an eater made of twoo3 oscillators
destroyingg1 andg4 gliders. A ‘universal’ eater, which destroys all types of
primary gliders is illustrated in Fig. 17(b).

Using eaters one can control glider streams emitted by glider guns, thus
in Fig. 18 we can see how the eater eliminatesg1 gliders produced bygun1.
There is at least one mobile eater of gliders, this isg24 glider that eats
g1 gliders.

5.2.3 Delay reaction
The basic delay reaction can be implemented wheng3 glider collides with
g4 glider and changed tog4 glider in the result of collision, and the original

(a) (b)

FIGURE 17
Examples of eater configurations in the Diffusion Rule CA.

t=0 t=1 t=2 t=3 t=4 t=5 t=6

FIGURE 18
Eater destroys gliders emitted by glider gun.
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(a) (b)

FIGURE 19
Delay reaction in the Diffusion Rule CA: (a) initial position of gliders before collision, (b) final
result of delay operation, the glider traveling west delayed and translated southward.

g4 glider delayed for two time steps but also translated southward one cell per
collision (Fig. 19).

5.2.4 Multiplication and reduction reactions
Atypical reaction of glider multiplication is shown in Fig. 20(a): twog4 gliders
are involved in head-on collision, with odd distance between glider heads
before collision, four newg4 gliders are produced in result of the collision.
Reduction is implemented as multiplication of gliders, where gliders in the
multiplied columns are in proximity of each other. As shown in Fig. 20(b),
when we collide two rows ofg4 gliders, four gliders in each row (eight gliders
in total are involved in the collision), then just four new gliders are produced.
Adjusting distance between gliders in colliding columns of gliders we can
achieve almost any (but odd) result of multiplication (Fig. 20(c)).

Using multiplication reactions we can also construct arbitrary packages
of gliders. For example, to construct a stream of packages, six gliders per
package, we collide stream of four-gliderg4 packages traveling west with
a pair ofg4 gliders traveling east (Fig 21(a)). Sequentially, all four-glider
packages are transformed to six-glider packages (Fig. 21(b)), the operation is
halted by pairg3 gliders.

5.2.5 Reflection reaction
We discovered nine types of reflection-type collisions between stationary and
mobile self-localizations. Let us discuss some examples shown in Fig. 22.
When twog1 gliders collide with each other (head-on collision, even distance,
with slight shift between gliders along south-north axis) twog4 gliders are

t=0 t=8

(a)

t=0 t=8

(b)

t=0 t=8

(c)

FIGURE 20
Multiplication of gliders: (a) multiplication 1× 1 → 4 reaction of gliders in binary collision,
(b) reduction 4× 4 → 4 reaction in glider collision, (c) conservative collision reaction.
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(a)

(b)

FIGURE 21
Constructing packages ofg4 gliders by multiplication reaction. (a) initial configuration, (b) final
configuration, recorded after 186th steps of evolution.

t=0 t=7

(a)

t=0 t=6

(b)

t=0 t=6

(c)

t=0 t=6

(d)

t=0 t=5

(e)

t=0 t=9

(f)

FIGURE 22
Collisions leading to reflections: (a) twog1 gliders collide with each other, (b)g4 glider collides
with o1 oscillator, (c)g2 glider collides witho1 oscillator, (d)g3 glider collides witho1 oscillator,
(e)g1 glider collides witho5 oscillator, (f)g3 glider collides witho3 oscillator.

generated; theseg4 gliders move in the direction perpendicular to original
trajectories of colliding gliders (Fig. 22(a)). Glider colliding witho1 oscillator
is reflected at the angle 90◦, as shown for collision ofg2, g4 andg3 gliders
with o1 oscillator (Fig. 22(b) (c) (d)).

Gliders can also be derived in addition of reflections, when colliding with
stationary localizations. Thus, when ag1 glider collides with ao5 oscillator,
two g1 gliders (going in opposite directions to each other) are generated and
follow trajectories perpendicular to original trajectory of collidedg1 gliders
(Fig. 22(e)).8 Similarly, wheng3 glider collides witho3 oscillator, twog4
gliders are produced (Fig. 22(f)).

5.2.6 Annihilation reaction
Significant amount of collisions between localizations in the Diffusion Rule
CA leads to annihilation of colliding patterns. Few examples of initial

8This reaction can synchronize multiple collisions as you can see in our exampleFANOUT.rle
available from http://uncomp.uwe.ac.uk/genaro/Diffusion_Rule/diffusionLife.html
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

FIGURE 23
Initial positions of colliding gliders and oscillators leading to annihilation reaction. (a)–(f) binary
collisions, (g)–(k) multiple collisions.

configurations of colliding objects (leading to annihilation) are shown in
Fig. 23, for binary collisions between gliders (Fig. 23(a)–(f)) and multiple
collisions between gliders and oscillators (Fig. 23(g)–(k)).

5.3 Computation in the Diffusion Rule
Basic operations necessary to implement a functionally complete set of logical
gates can be derived from collision dynamics presented in Fig. 22. Follow-
ing paradigms of collision-based computing [2] we encode logicalTruth by
presence of a glider or an oscillator, while absence of mobile or stationary
objects corresponds to logicalFalsity.

Namely, Fig. 22(b) (c) (d) demonstrate that stationary localizations, oscil-
lators, can play a role of mirrors thus deflecting gliders from their original
trajectory. The mirrors can be used to route signals. Signals can be deleted,
erased by placing eaters along trajectories of gliders, representing the signals.
Signals can be also delayed in collisions with other gliders or oscillators.

Collisions used to constructfanout gate are shown in Fig. 22(e) (f), a
glider collides to stationary localization, and two new gliders are produced in
result of the collision.

Dynamics displayed in Fig. 22(a) shows a typical collision gate, where
inputsx andy are represented by trajectories of gliders traveling East and
West, respectively. While trajectories of new gliders, traveling South and
North, encode value ofx and y. ConstantTruth is made up of ceaseless
stream of gliders, generated by glider guns.

5.3.1 Constructing a memory device
A memory in the Diffusion Rule CA can be constructed using basic interac-
tions betweeng1 gliders ando1 oscillator, as illustrated in Fig. 24. A bit of
information is represented in the memory unit by shaded 2× 2 cells square
in Fig. 24. The bit can be read by sending ag1 glider to the memory unit
(top configurations in Fig. 24, glider travels East). Wheng1 glider collides
with oscillatoro1 oscillator, both glider and oscillator are annihilated (and one
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FIGURE 24
Constructing a memory device in the Diffusion Rule CA. Snapshots of the configurations. Time
increases from right to left and from top to bottom. The domain where the bit of information (o1
oscillator) is written to is represented by a shaded zone.

FIGURE 25
Scheme ofxnor andxor gate.

new o1 oscillator is formed at some distance from the memory unit). Then
the bit is erased as a result of the reading operation. To write down the bit
one can send anotherg1 glider (in Fig. 24 this ‘writing’ glider travels West)
toward now empty memory unit and associatedo1 oscillator. Bothg1 glider
and associated oscillator are destroyed, howevero1 oscillator is restored in
memory unit (shaded region in Fig. 24), i.e., we write a bit again.

5.3.2 Asynchronous xnor and xor gate
Exploiting some features of the interaction betweeng1 glider ando1 oscillator
(Fig. 24) we can implement anasynchronous device which calculatesxnor
andxor operation at once (Fig. 25). Such a gate is designed by a scheme
similar to that outlined in [6]. Oscillator in position shaded by gray in Fig. 24
represents logical valueTrue and absence of the oscillator—valueFalse
of logical operationxnor, exclusivenor operation. An auxiliary oscillator
(generated when oscillator in shade position is annihilated) represents results
of xor operation, exclusiveor operation.

Assuming that signals on inputsx and y can be generated at any time
(no synchronization) except not at the same time, we obtain the following
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dynamics of the device (Fig. 25):

x y xnor xor
0 0 o1 0
0 g1 0 o1

g1 0 0 o1
g1 g1 o1 0

whereo1 andg1 stay for oscillator and glider, 0 means absence of the objects.

6 DISCUSSION

Findings discussed in the paper are based on computational experiments
with the Diffusion Rule CA and, particularly, exhaustive search of mobile
and stationary localizations emerged in spatio-temporal dynamics of the
automaton.

Amongst known 2D CA supporting localizations, the Diffusion Rule CA
is the minimal model because cell-state transitions depend not on intervals
of ‘cell sensitivity’ but on singletons, i.e. transition 0→ 1 occurs if there is
exactly two neighbors in state 1, and transition 1→ 1 if there exactly seven
neighbors in state 1. Moreover, we are not aware of any other CA which
exhibits so large variety of mobile localizations (gliders) and high diversity of
outcomes of collisions between mobile and/or stationary localizations. Despite

FIGURE 26
Simulating a luminescence pattern with the Diffusion Rule.
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B2/S4567, 105 times, 48564 cells

B2/S23, 105 times, 68156 cells B2/S2, 105 times, 46564 cells

Diffusion Rule, 105 times, 24394 cells

FIGURE 27
Virus propagation in the Diffusion Rule and three mutations in the same initial condition. Evolution
rules and data are given below snapshots.

of trying to undertake exhaustive study of localization dynamics we never-
theless missed several important points that could form objectives of future
studies.

A simple but interesting physical simulation was made setting a reaction
like luminescence. Using packages of both diagonal lines of 50 cells everyone.
The luminescence phenomenon was obtained over the evolution in densities of
cells in small intervals as illustrated the Fig. 26. The final state is dominated
by blinkers or oscillators. This simulations are developed by the group of
researchers iGEM-México at the MIT.9

9http://www.fenomec.unam.mx/pablo/igem/
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FIGURE 28
Simulating the evolution of a cell of the ECA Rule 18 or Rule 90 with the Diffusion Rule.

It is not a trivial problem to find large stable patterns constructed with
big complex structures. Cell colonies damaged by a virus is one of such
configurations (Fig. 27).

Diffusion Rule can simulate the evolution of a cell like the elemental cel-
lular automata (ECA) Rule 18 or Rule 90. For example, we take a diagonal
line with 503 cells in the initial condition. During the evolution original line
is multiplied in lines less and less small producing oscillators. Finally, the
evolution space is dominated by oscillators that represent exactly a cell alive
in 1D case. However, there is generated a second evolution of the same type
as illustrated in Fig. 28. In this example, it took 512 steps of evolution to reach
the configuration of 7,596 living cells.

The existence of stable configurations seems difficult to find in a rule which
is generally chaotically producing super-nova explosions. Nevertheless, we
have an example where four glider guns are synchronized to annihilate the
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FIGURE 29
Simultaneous annihilation across of four particles produced by four glider guns in the Diffusion
Rule. The evolution shows a global configuration in 36 steps with 118 live cells.

gliders. In this case, twog1 gliders and twog4 gliders come into quadruple
collision shown in Fig. 29.

We envisage that important open problems to be solved include imple-
mentation of quasi-chemical reactions between gliders, studies of grammars
derived and implementation of a full effective decision procedures based on
glider collisions. It will be also worth to demonstrate intrinsic universality and
self-reproduction. Another project would be to use de Bruijn diagrams [29]
to check if there are any still undiscovered gliders with velocity one or still
life configurations, and besides to use algorithms specialized in automatic
search for complicated or big gliders [15], oscillators, glider guns or more
configurations. Also we are planning to make an exploration of the cluster of
semi-totalistic rules originated by the Diffusion Rule.10 Finally, the last but
not least open problem is to decide if all types of gliders can be constructed in
collision with other gliders, a closure property with respect to set of gliders.

10http://uncomp.uwe.ac.uk/genaro/Life_dc22.html
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